- Author:
- Hanne <Hanne@hanne-nielsens-macbook.local>
- Date:
- 2009-12-14 15:46:42+13:00
- Desc:
- Added images in ai and svg format, removed non pub med references
- Permanent Source URI:
- https://models.fieldml.org/workspace/shorten_wall_2000/rawfile/ce6d9c910614a9689386f9af85e5b28a7f832112/shorten_wall_2000.cellml
<?xml version='1.0' encoding='utf-8'?>
<!-- FILE : shorten_model_2000.xml
CREATED : 3rd December 2002
LAST MODIFIED : 9th April 2003
AUTHOR : Catherine Lloyd
Bioengineering Institute
The University of Auckland
MODEL STATUS : This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the 16/01/2002 CellML Metadata 1.0 Specification.
DESCRIPTION : This file contains a CellML description of Shorten and Wall's 2000 Hodgkin-Huxley type mathematical model of bursting oscillations in pituitary corticotrophs.
CHANGES:
09/04/2003 - AAC - Added publication date information.
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="shorten_wall_2000_version01" name="shorten_wall_2000_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>A Hodgkin-Huxley Model Exhibiting Bursting Oscillations</title>
<author>
<firstname>Catherine</firstname>
<surname>Lloyd</surname>
<affiliation>
<shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This is the original unchecked version of the model imported from the previous
CellML model repository, 24-Jan-2006.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
Like many other types of excitable cell, pituitary corticotrophs display bursting behaviour. These electrical bursts consist of Ca<superscript>2+</superscript>-carrying action potentials, alternating with silent phases of repolarisation. Spikes representing sudden membrane depolarisation are often accompanied by oscillations in cytosolic Ca<superscript>2+</superscript> concentration ([Ca<superscript>2+</superscript>]<subscript>i</subscript>), and also in corticotrophs, they are followed by small oscillations in the membrane potential.
</para>
<para>
The mechanisms underlying this bursting behaviour have been the subject of several studies. In this study described here, Paul R. Shorten and David J.N. Wall develop a Hodgkin-Huxley type mathematical model (for the original model description see <ulink url="${HTML_EXMPL_HHSA_INTRO}">The Hodgkin-Huxley Squid Axon Model, 1952</ulink>) of pituitary corticotrophs. The model includes the major plasma membrane ionic currents and the associated intracellular Ca<superscript>2+</superscript> dynamics (see <xref linkend="fig_cell_diagram"/> below). The bursting process is driven by the slow modulation of the endoplasmic reticulum (ER) Ca<superscript>2+</superscript> concentration ([Ca<superscript>2+</superscript>]<subscript>er</subscript>), giving rise to a slow component in [Ca<superscript>2+</superscript>]<subscript>i</subscript>. This then gives rise to the electrical bursting via a Ca<superscript>2+</superscript>-activated potassium current (<emphasis>I<subscript>K-Ca</subscript>
</emphasis>). Model simulations showed that bursting frequency is dependent on the ER Ca<superscript>2+</superscript> storage capacity, the Ca<superscript>2+</superscript> transport mechanisms, and the activation of a Ca<superscript>2+</superscript>-activated K<superscript>+</superscript> current.
</para>
<para>
Excitable cells display a wide range of different types of bursting behaviours. Shorten and Wall discovered that their model exhibits a novel form of bursting due to bistability between two stable oscillatory solutions. Due to the bifurcations involved, this type of bursting is called 'fold cycle/fold cycle' bursting. In their paper, which is fully referenced below, Shorten and Wall aim to highlight interesting modes of bursting in Hodgkin-Huxley type mathematical models and elucidate their underlying mechanisms. They especially emphasise how small parameter changes can cause large changes in the model behaviour.
</para>
<para>
A Hodgkin-Huxley Model Exhibiting Bursting Oscillations, Paul R. Shorten and David J.N. Wall, 2000, <emphasis>Bulletin of Mathematical Biology</emphasis>, 62, 695-715. <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10938629&dopt=Abstract">PubMed ID: 10938629</ulink>
</para>
<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>cell schematic for the model</title>
</objectinfo>
<imagedata fileref="shorten_wall_2000.png"/>
</imageobject>
</mediaobject>
<caption>Schematic diagram of a pituitary corticotroph cell showing the transmembrane ionic currents and the intracellular Ca<superscript>2+</superscript> dynamics captured by the mathematical model. Arrows indicate ionic channels and pumps. <emphasis>I<subscript>Ca-L</subscript>
</emphasis> represents an L-type Ca<superscript>2+</superscript> current responsible for most of the Ca<superscript>2+</superscript> influx during an action potential. <emphasis>I<subscript>Ca-T</subscript>
</emphasis> is a T-type voltage-sensitive Ca<superscript>2+</superscript> current. A voltage-sensitive K<superscript>+</superscript> current, <emphasis>I<subscript>K-DR</subscript>
</emphasis>, is mainly responsible for action potential repolarisation. A Ca<superscript>2+</superscript>-activated K<superscript>+</superscript> current, <emphasis>I<subscript>K-Ca</subscript>
</emphasis>, is essential for bursting behaviour. The remaining leak current, <emphasis>I<subscript>leak</subscript>
</emphasis>, represents all other ionic fluxes across the plasma membrane which are not specifically described by the model. <emphasis>J<subscript>eff</subscript>
</emphasis> and <emphasis>J<subscript>up</subscript>
</emphasis> are the ER and plasma membrane Ca<superscript>2+</superscript>-ATPase pumps, and <emphasis>J<subscript>rel</subscript>
</emphasis> represents the ER Ca<superscript>2+</superscript> leakage term. Within the ER and the cytosol, significant portions of Ca<superscript>2+</superscript> are bound to buffers, denoted by B<subscript>er</subscript> and B<subscript>c</subscript> respectively.</caption>
</informalfigure>
</sect1>
</article>
</documentation>
<!--
Below, we define some additional units for association with variables and
constants within the model. The identifiers are fairly self-explanatory.
-->
<units name="millisecond">
<unit units="second" prefix="milli"/>
</units>
<units name="millivolt">
<unit units="volt" prefix="milli"/>
</units>
<units name="picoL">
<unit units="litre" prefix="pico"/>
</units>
<units name="picoL_per_millisecond">
<unit units="picoL"/>
<unit units="millisecond" exponent="-1.0"/>
</units>
<units name="millimolar">
<unit units="mole" prefix="milli"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="millimolar_per_millisecond">
<unit units="millimolar"/>
<unit units="millisecond" exponent="-1.0"/>
</units>
<units name="molar">
<unit units="mole"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="micromolar">
<unit units="mole" prefix="micro"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="micromolar_micrometre_per_millisecond">
<unit units="micromolar"/>
<unit units="micrometre"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="micromolar_picoL_per_millisecond">
<unit units="micromolar"/>
<unit units="picoL"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="micromolar_micrometre_per_millisecond_per_picoA">
<unit units="micromolar"/>
<unit units="micrometre"/>
<unit units="millisecond" exponent="-1"/>
<unit units="ampere" prefix="pico" exponent="-1"/>
</units>
<units name="nanoS_per_millimolar">
<unit units="siemens" prefix="nano"/>
<unit units="molar" prefix="milli" exponent="-1"/>
</units>
<units name="picoF">
<unit units="farad" prefix="pico"/>
</units>
<units name="nanoS">
<unit units="siemens" prefix="nano"/>
</units>
<units name="microA_per_cm2">
<unit units="ampere" prefix="micro"/>
<unit units="metre" prefix="centi" exponent="-2.0"/>
</units>
<units name="micrometre">
<unit units="metre" prefix="micro"/>
</units>
<units name="per_micrometre">
<unit units="micrometre" exponent="-1.0"/>
</units>
<units name="joule_per_kilomole_kelvin">
<unit units="joule"/>
<unit units="mole" prefix="kilo" exponent="-1"/>
<unit units="kelvin" exponent="-1"/>
</units>
<units name="coulomb_per_mole">
<unit units="coulomb"/>
<unit units="mole" exponent="-1"/>
</units>
<component name="environment">
<variable units="second" public_interface="out" name="time"/>
<variable units="picoL" public_interface="out" name="V_cell" initial_value="1.77"/>
<variable units="millimolar" public_interface="out" name="Ca_e" initial_value="20.0"/>
<variable units="millimolar" public_interface="out" name="K_e" initial_value="5.6"/>
<variable units="millimolar" public_interface="out" name="K_i" initial_value="140.0"/>
<variable units="millivolt" public_interface="out" name="V_tau" initial_value="-60.0"/>
<variable units="millivolt" public_interface="out" name="k_tau" initial_value="22.0"/>
</component>
<component name="membrane">
<variable units="millivolt" public_interface="out" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="out" name="R" initial_value="8.314"/>
<variable units="kelvin" public_interface="out" name="T" initial_value="310.0"/>
<variable units="coulomb_per_mole" public_interface="out" name="F" initial_value="96845.0"/>
<variable units="picoF" name="Cm" initial_value="7.0"/>
<variable units="second" public_interface="in" name="time"/>
<variable units="microA_per_cm2" public_interface="in" name="i_Ca_L"/>
<variable units="microA_per_cm2" public_interface="in" name="i_Ca_T"/>
<variable units="microA_per_cm2" public_interface="in" name="i_K_DR"/>
<variable units="microA_per_cm2" public_interface="in" name="i_K_Ca"/>
<variable units="microA_per_cm2" public_interface="in" name="i_leak"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="membrane_voltage_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> V </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<plus/>
<ci> i_Ca_L </ci>
<ci> i_Ca_T </ci>
<ci> i_K_DR </ci>
<ci> i_K_Ca </ci>
<ci> i_leak </ci>
</apply>
</apply>
<ci> Cm </ci>
</apply>
</apply>
</math>
</component>
<component name="L_type_calcium_current">
<variable units="microA_per_cm2" public_interface="out" name="i_Ca_L"/>
<variable units="millivolt" public_interface="out" name="V_Ca"/>
<variable units="nanoS_per_millimolar" name="g_Ca_L" initial_value="9.0"/>
<variable units="second" public_interface="in" private_interface="out" name="time"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V_tau"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="k_tau"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="millimolar" public_interface="in" name="Ca_e"/>
<variable units="millimolar" public_interface="in" name="Ca_i"/>
<variable units="dimensionless" private_interface="in" name="m_L"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Ca_L_calculation">
<eq/>
<ci> i_Ca_L </ci>
<apply>
<times/>
<ci> g_Ca_L </ci>
<apply>
<power/>
<ci> m_L </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<ci> V_Ca </ci>
</apply>
</apply>
<apply id="V_Ca_calculation">
<eq/>
<ci> V_Ca </ci>
<apply>
<times/>
<ci> V </ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci> Ca_i </ci>
<ci> Ca_e </ci>
</apply>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci> F </ci>
<ci> V </ci>
</apply>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci> F </ci>
<ci> V </ci>
</apply>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="L_type_calcium_current_m_gate">
<variable units="dimensionless" public_interface="out" name="m_L"/>
<variable units="dimensionless" name="m_L_infinity"/>
<variable units="millisecond" name="tau_m_L"/>
<variable units="millisecond" name="tau_m_L_max" initial_value="27.0"/>
<variable units="millivolt" name="V_m_L" initial_value="-18.0"/>
<variable units="millivolt" name="k_m_L" initial_value="12.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millivolt" public_interface="in" name="V_tau"/>
<variable units="millivolt" public_interface="in" name="k_tau"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="m_L_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> m_L </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> m_L_infinity </ci>
<ci> m_L </ci>
</apply>
<ci> tau_m_L </ci>
</apply>
</apply>
<apply id="m_L_infinity_calculation">
<eq/>
<ci> m_L_infinity </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V_m_L </ci>
<ci> V </ci>
</apply>
<ci> k_m_L </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="tau_m_L_calculation">
<eq/>
<ci> tau_m_L </ci>
<apply>
<divide/>
<ci> tau_m_L_max </ci>
<apply>
<plus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V </ci>
<ci> V_tau </ci>
</apply>
<ci> k_tau </ci>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<apply>
<minus/>
<ci> V_tau </ci>
<ci> V </ci>
</apply>
</apply>
<ci> k_tau </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="T_type_calcium_current">
<variable units="microA_per_cm2" public_interface="out" name="i_Ca_T"/>
<variable units="nanoS_per_millimolar" name="g_Ca_T" initial_value="10.0"/>
<variable units="second" public_interface="in" private_interface="out" name="time"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V_tau"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="k_tau"/>
<variable units="millivolt" public_interface="in" name="V_Ca"/>
<variable units="dimensionless" private_interface="in" name="m_T"/>
<variable units="dimensionless" private_interface="in" name="h_T"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Ca_T_calculation">
<eq/>
<ci> i_Ca_T </ci>
<apply>
<times/>
<ci> g_Ca_T </ci>
<apply>
<power/>
<ci> m_T </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<ci> h_T </ci>
<ci> V_Ca </ci>
</apply>
</apply>
</math>
</component>
<component name="T_type_calcium_current_m_gate">
<variable units="dimensionless" public_interface="out" name="m_T"/>
<variable units="dimensionless" name="m_T_infinity"/>
<variable units="millisecond" name="tau_m_T"/>
<variable units="millisecond" name="tau_m_T_max" initial_value="10.0"/>
<variable units="millivolt" name="V_m_T" initial_value="-30.0"/>
<variable units="millivolt" name="k_m_T" initial_value="10.5"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millivolt" public_interface="in" name="V_tau"/>
<variable units="millivolt" public_interface="in" name="k_tau"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="m_T_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> m_T </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> m_T_infinity </ci>
<ci> m_T </ci>
</apply>
<ci> tau_m_T </ci>
</apply>
</apply>
<apply id="m_T_infinity_calculation">
<eq/>
<ci> m_T_infinity </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V_m_T </ci>
<ci> V </ci>
</apply>
<ci> k_m_T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="tau_m_T_calculation">
<eq/>
<ci> tau_m_T </ci>
<apply>
<divide/>
<ci> tau_m_T_max </ci>
<apply>
<plus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V </ci>
<ci> V_tau </ci>
</apply>
<ci> k_tau </ci>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<apply>
<minus/>
<ci> V_tau </ci>
<ci> V </ci>
</apply>
</apply>
<ci> k_tau </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="T_type_calcium_current_h_gate">
<variable units="dimensionless" public_interface="out" name="h_T"/>
<variable units="dimensionless" name="h_T_infinity"/>
<variable units="millisecond" name="tau_h_T" initial_value="15.0"/>
<variable units="millivolt" name="V_h_T" initial_value="-57.0"/>
<variable units="millivolt" name="k_h_T" initial_value="5.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="h_T_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> h_T </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> h_T_infinity </ci>
<ci> h_T </ci>
</apply>
<ci> tau_h_T </ci>
</apply>
</apply>
<apply id="h_T_infinity_calculation">
<eq/>
<ci> h_T_infinity </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V </ci>
<ci> V_h_T </ci>
</apply>
<ci> k_h_T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="voltage_sensitive_K_current">
<variable units="microA_per_cm2" public_interface="out" name="i_K_DR"/>
<variable units="millivolt" public_interface="out" name="V_K"/>
<variable units="nanoS_per_millimolar" name="g_K_DR" initial_value="0.1"/>
<variable units="second" public_interface="in" private_interface="out" name="time"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="millimolar" public_interface="in" name="K_e"/>
<variable units="millimolar" public_interface="in" name="K_i"/>
<variable units="dimensionless" private_interface="in" name="n"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_K_DR_calculation">
<eq/>
<ci> i_K_DR </ci>
<apply>
<times/>
<ci> g_K_DR </ci>
<ci> n </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
<apply id="V_K_calculation">
<eq/>
<ci> V_K </ci>
<apply>
<times/>
<ci> V </ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci> K_i </ci>
<ci> K_e </ci>
</apply>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci> F </ci>
<ci> V </ci>
</apply>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci> F </ci>
<ci> V </ci>
</apply>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="voltage_sensitive_K_current_n_gate">
<variable units="dimensionless" public_interface="out" name="n"/>
<variable units="dimensionless" name="n_infinity"/>
<variable units="millisecond" name="tau_n" initial_value="20.0"/>
<variable units="millivolt" name="V_n" initial_value="-20.0"/>
<variable units="millivolt" name="k_n" initial_value="4.5"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="n_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> n </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> n_infinity </ci>
<ci> n </ci>
</apply>
<ci> tau_n </ci>
</apply>
</apply>
<apply id="n_infinity_calculation">
<eq/>
<ci> n_infinity </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V_n </ci>
<ci> V </ci>
</apply>
<ci> k_n </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="Ca_activated_K_current">
<variable units="microA_per_cm2" public_interface="out" name="i_K_Ca"/>
<variable units="nanoS_per_millimolar" name="g_K_Ca" initial_value="0.09"/>
<variable units="micromolar" name="Kc" initial_value="0.4"/>
<variable units="second" public_interface="in" name="time"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millivolt" public_interface="in" name="V_K"/>
<variable units="millimolar" public_interface="in" name="Ca_i"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_K_Ca_calculation">
<eq/>
<ci> i_K_Ca </ci>
<apply>
<times/>
<ci> g_K_Ca </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
<apply>
<power/>
<ci> Kc </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
</apply>
</apply>
<ci> V_K </ci>
</apply>
</apply>
</math>
</component>
<component name="leak_current">
<variable units="microA_per_cm2" public_interface="out" name="i_leak"/>
<variable units="nanoS_per_millimolar" name="g_L" initial_value="0.09"/> <variable units="millivolt" name="V_L" initial_value="-67.0"/>
<variable units="second" public_interface="in" name="time"/>
<variable units="millivolt" public_interface="in" name="V"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_leak_calculation">
<eq/>
<ci> i_leak </ci>
<apply>
<times/>
<ci> g_L </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_L </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ER_calcium">
<variable units="millimolar" public_interface="out" name="Ca_er"/>
<variable units="millimolar_per_millisecond" public_interface="out" name="J_rel"/>
<variable units="millimolar_per_millisecond" public_interface="out" name="J_up"/>
<variable units="picoL" name="V_er"/>
<variable units="micromolar" name="K_er" initial_value="0.2"/>
<variable units="dimensionless" name="f_er" initial_value="0.0025"/>
<variable units="picoL_per_millisecond" name="P" initial_value="0.0012"/>
<variable units="micromolar_picoL_per_millisecond" name="v_er" initial_value="0.05"/>
<variable units="millimolar" public_interface="in" name="Ca_i"/>
<variable units="picoL" public_interface="in" name="V_cell"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Ca_er_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> Ca_er </ci>
</apply>
<apply>
<times/>
<apply>
<minus/>
<apply>
<divide/>
<ci> f_er </ci>
<ci> V_er </ci>
</apply>
</apply>
<apply>
<minus/>
<ci> J_rel </ci>
<ci> J_up </ci>
</apply>
</apply>
</apply>
<apply id="J_rel_calculation">
<eq/>
<ci> J_rel </ci>
<apply>
<times/>
<ci> P </ci>
<apply>
<minus/>
<ci> Ca_er </ci>
<ci> Ca_i </ci>
</apply>
</apply>
</apply>
<apply id="J_up_calculation">
<eq/>
<ci> J_up </ci>
<apply>
<divide/>
<apply>
<times/>
<ci> v_er </ci>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<power/>
<ci> K_er </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
</apply>
<apply id="V_er_calculation">
<eq/>
<ci> V_er </ci>
<apply>
<times/>
<ci> V_cell </ci>
<cn cellml:units="dimensionless"> 0.15 </cn>
</apply>
</apply>
</math>
</component>
<component name="cytosolic_calcium">
<variable units="millimolar" public_interface="out" name="Ca_i"/>
<variable units="picoL" name="V_c"/>
<variable units="micromolar" name="K_p" initial_value="0.08"/>
<variable units="dimensionless" name="f_cyt" initial_value="0.01"/>
<variable units="micromolar_micrometre_per_millisecond" name="v_p" initial_value="0.045"/>
<variable units="millimolar_per_millisecond" name="J_in"/>
<variable units="millimolar_per_millisecond" name="J_eff"/>
<variable units="micromolar_micrometre_per_millisecond_per_picoA" name="alpha" initial_value="0.0074"/>
<variable units="per_micrometre" name="beta" initial_value="0.47"/>
<variable units="microA_per_cm2" public_interface="in" name="i_Ca_L"/>
<variable units="microA_per_cm2" public_interface="in" name="i_Ca_T"/>
<variable units="millimolar_per_millisecond" public_interface="in" name="J_rel"/>
<variable units="millimolar_per_millisecond" public_interface="in" name="J_up"/>
<variable units="picoL" public_interface="in" name="V_cell"/>
<variable units="second" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Ca_i_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> Ca_i </ci>
</apply>
<apply>
<plus/>
<apply>
<times/>
<apply>
<divide/>
<ci> f_cyt </ci>
<ci> V_c </ci>
</apply>
<apply>
<minus/>
<ci> J_rel </ci>
<ci> J_up </ci>
</apply>
</apply>
<apply>
<times/>
<ci> f_cyt </ci>
<ci> beta </ci>
</apply>
<apply>
<minus/>
<ci> J_in </ci>
<ci> J_eff </ci>
</apply>
</apply>
</apply>
<apply id="J_in_calculation">
<eq/>
<ci> J_in </ci>
<apply>
<times/>
<apply>
<minus/>
<ci> alpha </ci>
</apply>
<apply>
<plus/>
<ci> i_Ca_L </ci>
<ci> i_Ca_T </ci>
</apply>
</apply>
</apply>
<apply id="J_eff_calculation">
<eq/>
<ci> J_eff </ci>
<apply>
<divide/>
<apply>
<times/>
<ci> v_p </ci>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Ca_i </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<power/>
<ci> K_p </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
</apply>
<apply id="V_c_calculation">
<eq/>
<ci> V_c </ci>
<apply>
<times/>
<ci> V_cell </ci>
<cn cellml:units="dimensionless"> 0.85 </cn>
</apply>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="containment"/>
<component_ref component="membrane">
<component_ref component="L_type_calcium_current">
<component_ref component="L_type_calcium_current_m_gate"/>
</component_ref>
<component_ref component="T_type_calcium_current">
<component_ref component="T_type_calcium_current_m_gate"/>
<component_ref component="T_type_calcium_current_h_gate"/>
</component_ref>
<component_ref component="voltage_sensitive_K_current">
<component_ref component="voltage_sensitive_K_current_n_gate"/>
</component_ref>
<component_ref component="Ca_activated_K_current"/>
<component_ref component="leak_current"/>
<component_ref component="ER_calcium"/>
<component_ref component="cytosolic_calcium"/>
</component_ref>
</group>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="L_type_calcium_current">
<component_ref component="L_type_calcium_current_m_gate"/>
</component_ref>
<component_ref component="T_type_calcium_current">
<component_ref component="T_type_calcium_current_m_gate"/>
<component_ref component="T_type_calcium_current_h_gate"/>
</component_ref>
<component_ref component="voltage_sensitive_K_current">
<component_ref component="voltage_sensitive_K_current_n_gate"/>
</component_ref>
</group>
<connection>
<map_components component_2="environment" component_1="membrane"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="L_type_calcium_current"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="Ca_e" variable_1="Ca_e"/>
<map_variables variable_2="V_tau" variable_1="V_tau"/>
<map_variables variable_2="k_tau" variable_1="k_tau"/>
</connection>
<connection>
<map_components component_2="environment" component_1="T_type_calcium_current"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V_tau" variable_1="V_tau"/>
<map_variables variable_2="k_tau" variable_1="k_tau"/>
</connection>
<connection>
<map_components component_2="environment" component_1="voltage_sensitive_K_current"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="K_e" variable_1="K_e"/>
<map_variables variable_2="K_i" variable_1="K_i"/>
</connection>
<connection>
<map_components component_2="environment" component_1="Ca_activated_K_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="leak_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="ER_calcium"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V_cell" variable_1="V_cell"/>
</connection>
<connection>
<map_components component_2="environment" component_1="cytosolic_calcium"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V_cell" variable_1="V_cell"/>
</connection>
<connection>
<map_components component_2="L_type_calcium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Ca_L" variable_1="i_Ca_L"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="F" variable_1="F"/>
<map_variables variable_2="T" variable_1="T"/>
</connection>
<connection>
<map_components component_2="T_type_calcium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Ca_T" variable_1="i_Ca_T"/>
</connection>
<connection>
<map_components component_2="voltage_sensitive_K_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K_DR" variable_1="i_K_DR"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="F" variable_1="F"/>
<map_variables variable_2="T" variable_1="T"/>
</connection>
<connection>
<map_components component_2="Ca_activated_K_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K_Ca" variable_1="i_K_Ca"/>
</connection>
<connection>
<map_components component_2="leak_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_leak" variable_1="i_leak"/>
</connection>
<connection>
<map_components component_2="T_type_calcium_current" component_1="L_type_calcium_current"/>
<map_variables variable_2="V_Ca" variable_1="V_Ca"/>
</connection>
<connection>
<map_components component_2="cytosolic_calcium" component_1="L_type_calcium_current"/>
<map_variables variable_2="Ca_i" variable_1="Ca_i"/>
<map_variables variable_2="i_Ca_L" variable_1="i_Ca_L"/>
</connection>
<connection>
<map_components component_2="cytosolic_calcium" component_1="T_type_calcium_current"/>
<map_variables variable_2="i_Ca_T" variable_1="i_Ca_T"/>
</connection>
<connection>
<map_components component_2="Ca_activated_K_current" component_1="voltage_sensitive_K_current"/>
<map_variables variable_2="V_K" variable_1="V_K"/>
</connection>
<connection>
<map_components component_2="cytosolic_calcium" component_1="Ca_activated_K_current"/>
<map_variables variable_2="Ca_i" variable_1="Ca_i"/>
</connection>
<connection>
<map_components component_2="cytosolic_calcium" component_1="ER_calcium"/>
<map_variables variable_2="Ca_i" variable_1="Ca_i"/>
<map_variables variable_2="J_rel" variable_1="J_rel"/>
<map_variables variable_2="J_up" variable_1="J_up"/>
</connection>
<connection>
<map_components component_2="L_type_calcium_current_m_gate" component_1="L_type_calcium_current"/>
<map_variables variable_2="m_L" variable_1="m_L"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="V_tau" variable_1="V_tau"/>
<map_variables variable_2="k_tau" variable_1="k_tau"/>
</connection>
<connection>
<map_components component_2="T_type_calcium_current_m_gate" component_1="T_type_calcium_current"/>
<map_variables variable_2="m_T" variable_1="m_T"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="V_tau" variable_1="V_tau"/>
<map_variables variable_2="k_tau" variable_1="k_tau"/>
</connection>
<connection>
<map_components component_2="T_type_calcium_current_h_gate" component_1="T_type_calcium_current"/>
<map_variables variable_2="h_T" variable_1="h_T"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="voltage_sensitive_K_current_n_gate" component_1="voltage_sensitive_K_current"/>
<map_variables variable_2="n" variable_1="n"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<rdf:RDF>
<rdf:Bag rdf:about="rdf:#96808c5c-c465-4f6b-a7b4-1fce4571e2d8">
<rdf:li>Pituitary Corticotrophs</rdf:li>
<rdf:li>corticotroph</rdf:li>
<rdf:li>calcium dynamics</rdf:li>
<rdf:li>electrophysiology</rdf:li>
<rdf:li>pituitary</rdf:li>
<rdf:li>hodgkin-huxley</rdf:li>
</rdf:Bag>
<rdf:Seq rdf:about="rdf:#3b2c2689-14a6-4107-b255-2de23469186d">
<rdf:li rdf:resource="rdf:#49be5d18-a14e-40db-bc2f-447760b4d3db"/>
<rdf:li rdf:resource="rdf:#78d04e07-85a8-48be-ae7a-7e088cb09131"/>
</rdf:Seq>
<rdf:Description rdf:about="rdf:#2a4b068b-509f-48a4-8abc-86c2be52540b">
<vCard:Orgname>The University of Auckland</vCard:Orgname>
<vCard:Orgunit>The Bioengineering Institute</vCard:Orgunit>
</rdf:Description>
<rdf:Description rdf:about="rdf:#56940d30-8488-4245-a744-1881af38730f">
<vCard:Given>Paul</vCard:Given>
<vCard:Family>Shorten</vCard:Family>
<vCard:Other>R</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ecf5dbf9-ed41-4a3b-acce-2b2f67a9a288">
<vCard:Given>Autumn</vCard:Given>
<vCard:Family>Cuellar</vCard:Family>
<vCard:Other>A</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#419665cf-565b-4e43-aa25-b6c56f271430">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#49be5d18-a14e-40db-bc2f-447760b4d3db">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#56940d30-8488-4245-a744-1881af38730f"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#78d04e07-85a8-48be-ae7a-7e088cb09131">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#93f1b066-0f0d-4685-9f88-e3cf4085858f"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#680d54d6-4946-470f-be25-f7953200365d">
<rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
<rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#a4ca7b80-4324-4bda-9dd7-7be5d909d1a0">
<dcterms:W3CDTF>2002-12-03</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="#shorten_wall_2000_version01">
<dc:title>
Shorten and Wall's 2000 Hodgkin-Huxley type mathematical model of
bursting oscillations in pituitary corticotrophs.
</dc:title>
<cmeta:bio_entity>Pituitary Corticotrophs</cmeta:bio_entity>
<cmeta:comment rdf:resource="rdf:#22a8032f-b5ae-4b1f-8bcc-f3004132fb30"/>
<bqs:reference rdf:resource="rdf:#93a7f045-e5bf-4c40-8b19-8f6be5b8d339"/>
<bqs:reference rdf:resource="rdf:#b16bf41f-113a-4369-8500-d337554e323f"/>
</rdf:Description>
<rdf:Description rdf:about="">
<dc:publisher>
The University of Auckland, Bioengineering Institute
</dc:publisher>
<cmeta:modification rdf:resource="rdf:#9f5b4aca-c29c-4022-b698-61d89e4de54a"/>
<dcterms:created rdf:resource="rdf:#a4ca7b80-4324-4bda-9dd7-7be5d909d1a0"/>
<dc:creator rdf:resource="rdf:#02fff4be-1c68-422b-8950-f3b2eca6f3a7"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ea511990-dde8-4070-afd8-3050d6987e24">
<dc:title>Bulletin of Mathematical Biology</dc:title>
</rdf:Description>
<rdf:Description rdf:about="rdf:#22a8032f-b5ae-4b1f-8bcc-f3004132fb30">
<dc:creator rdf:resource="rdf:#d6977cb9-b89e-4464-93f2-f8f7f4049e83"/>
<rdf:value>
This is the CellML description of Shorten and Wall's 2000
Hodgkin-Huxley type mathematical model of bursting oscillations in
pituitary corticotrophs.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e1ea7750-f364-4b01-b85a-afd4638860d8">
<vCard:N rdf:resource="rdf:#ecf5dbf9-ed41-4a3b-acce-2b2f67a9a288"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#02fff4be-1c68-422b-8950-f3b2eca6f3a7">
<vCard:ORG rdf:resource="rdf:#2a4b068b-509f-48a4-8abc-86c2be52540b"/>
<vCard:EMAIL rdf:resource="rdf:#680d54d6-4946-470f-be25-f7953200365d"/>
<vCard:N rdf:resource="rdf:#419665cf-565b-4e43-aa25-b6c56f271430"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9f5b4aca-c29c-4022-b698-61d89e4de54a">
<dcterms:modified rdf:resource="rdf:#ec786568-fceb-4536-9983-3883a6c3d271"/>
<rdf:value>
Added publication date information.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#e1ea7750-f364-4b01-b85a-afd4638860d8"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#93f1b066-0f0d-4685-9f88-e3cf4085858f">
<vCard:Given>David</vCard:Given>
<vCard:Family>Wall</vCard:Family>
<vCard:Other>J</vCard:Other>
<vCard:Other>N</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#93a7f045-e5bf-4c40-8b19-8f6be5b8d339">
<dc:subject rdf:resource="rdf:#608e84ec-57c2-4134-b804-84a84fadc75a"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d6977cb9-b89e-4464-93f2-f8f7f4049e83">
<vCard:FN>Catherine Lloyd</vCard:FN>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b4cf885f-a2c4-438e-87b2-a926a36dbb85">
<dc:creator rdf:resource="rdf:#3b2c2689-14a6-4107-b255-2de23469186d"/>
<dc:title>
A Hodgkin-Huxley Model Exhibiting Bursting Oscillations
</dc:title>
<bqs:volume>62</bqs:volume>
<bqs:first_page>695</bqs:first_page>
<bqs:Journal rdf:resource="rdf:#ea511990-dde8-4070-afd8-3050d6987e24"/>
<dcterms:issued rdf:resource="rdf:#4fbbbb65-1454-487f-afe7-a46eea90dd0b"/>
<bqs:last_page>715</bqs:last_page>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4fbbbb65-1454-487f-afe7-a46eea90dd0b">
<dcterms:W3CDTF>2000-07</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#608e84ec-57c2-4134-b804-84a84fadc75a">
<bqs:subject_type>keyword</bqs:subject_type>
<rdf:value rdf:resource="rdf:#96808c5c-c465-4f6b-a7b4-1fce4571e2d8"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ec786568-fceb-4536-9983-3883a6c3d271">
<dcterms:W3CDTF>2003-04-09</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b16bf41f-113a-4369-8500-d337554e323f">
<bqs:Pubmed_id>10938629</bqs:Pubmed_id>
<bqs:JournalArticle rdf:resource="rdf:#b4cf885f-a2c4-438e-87b2-a926a36dbb85"/>
</rdf:Description>
</rdf:RDF>
</model>