Location: A review of cardiac cellular electrophysiology models @ f954e5918331 / dojo-presentation / js / dojo / dojox / gfx / arc.js

Author:
David Nickerson <david.nickerson@gmail.com>
Date:
2021-09-16 00:41:19+12:00
Desc:
Updating Noble 1962 model: * Exposing the membrane potential to the top-level model; * adding SED-ML for the paced and pacemaker variants of the model. Using OpenCOR Snapshot release 2021-09-14.
Permanent Source URI:
https://models.fieldml.org/workspace/a1/rawfile/f954e59183314cd37f86c8832dc81317d01c8ec5/dojo-presentation/js/dojo/dojox/gfx/arc.js

dojo.provide("dojox.gfx.arc");

dojo.require("dojox.gfx.matrix");

(function(){
	var m = dojox.gfx.matrix,
		unitArcAsBezier = function(alpha){
			// summary: return a start point, 1st and 2nd control points, and an end point of
			//		a an arc, which is reflected on the x axis
			// alpha: Number: angle in radians, the arc will be 2 * angle size
			var cosa  = Math.cos(alpha), sina  = Math.sin(alpha),
				p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};
			return {	// Object
				s:  {x: cosa, y: -sina},
				c1: {x: p2.x, y: -p2.y},
				c2: p2,
				e:  {x: cosa, y: sina}
			};
		},
		twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8, 
		pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);

	dojo.mixin(dojox.gfx.arc, {
		unitArcAsBezier: unitArcAsBezier,
		curvePI4: curvePI4,
		arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){
			// summary: calculates an arc as a series of Bezier curves
			//	given the last point and a standard set of SVG arc parameters,
			//	it returns an array of arrays of parameters to form a series of
			//	absolute Bezier curves.
			// last: Object: a point-like object as a start of the arc
			// rx: Number: a horizontal radius for the virtual ellipse
			// ry: Number: a vertical radius for the virtual ellipse
			// xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees
			// large: Boolean: which part of the ellipse will be used (the larger arc if true)
			// sweep: Boolean: direction of the arc (CW if true)
			// x: Number: the x coordinate of the end point of the arc
			// y: Number: the y coordinate of the end point of the arc
			
			// calculate parameters
			large = Boolean(large);
			sweep = Boolean(sweep);
			var xRot = m._degToRad(xRotg),
				rx2 = rx * rx, ry2 = ry * ry,
				pa = m.multiplyPoint(
					m.rotate(-xRot), 
					{x: (last.x - x) / 2, y: (last.y - y) / 2}
				),
				pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,
				c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));
			if(isNaN(c1)){ c1 = 0; }
			var	ca = {
					x:  c1 * rx * pa.y / ry,
					y: -c1 * ry * pa.x / rx
				};
			if(large == sweep){
				ca = {x: -ca.x, y: -ca.y};
			}
			// the center
			var c = m.multiplyPoint(
				[
					m.translate(
						(last.x + x) / 2,
						(last.y + y) / 2
					),
					m.rotate(xRot)
				], 
				ca
			);
			// calculate the elliptic transformation
			var elliptic_transform = m.normalize([
				m.translate(c.x, c.y),
				m.rotate(xRot),
				m.scale(rx, ry)
			]);
			// start, end, and size of our arc
			var inversed = m.invert(elliptic_transform),
				sp = m.multiplyPoint(inversed, last),
				ep = m.multiplyPoint(inversed, x, y),
				startAngle = Math.atan2(sp.y, sp.x),
				endAngle   = Math.atan2(ep.y, ep.x),
				theta = startAngle - endAngle;	// size of our arc in radians
			if(sweep){ theta = -theta; }
			if(theta < 0){
				theta += twoPI;
			}else if(theta > twoPI){
				theta -= twoPI;
			}
							
			// draw curve chunks
			var alpha = pi8, curve = curvePI4, step  = sweep ? alpha : -alpha,
				result = [];
			for(var angle = theta; angle > 0; angle -= pi4){
				if(angle < pi48){
					alpha = angle / 2;
					curve = unitArcAsBezier(alpha);
					step  = sweep ? alpha : -alpha;
					angle = 0;	// stop the loop
				}
				var c1, c2, e,
					M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);
				if(sweep){
					c1 = m.multiplyPoint(M, curve.c1);
					c2 = m.multiplyPoint(M, curve.c2);
					e  = m.multiplyPoint(M, curve.e );
				}else{
					c1 = m.multiplyPoint(M, curve.c2);
					c2 = m.multiplyPoint(M, curve.c1);
					e  = m.multiplyPoint(M, curve.s );
				}
				// draw the curve
				result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);
				startAngle += 2 * step;
			}
			return result;	// Object
		}
	});
})();