Location: Hodgkin & Huxley (1952) model @ ab2962b87966 / sed-ml / fig19_h.dig

Author:
WeiweiAi <wai484@aucklanduni.ac.nz>
Date:
2022-03-31 10:48:40+13:00
Desc:
Add open channel IV of HH models; Add simulation and plot python scripts
Permanent Source URI:
https://models.fieldml.org/workspace/64f/rawfile/ab2962b8796666ad9938a2577611c954f006b5fd/sed-ml/fig19_h.dig

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE engauge>
<Document VersionNumber="12.1" AxesPointsRequired="0">
    <Image Width="2476" Height="1080"><![CDATA[AAAAAYlQTkcNChoKAAAADUlIRFIAAAmsAAAEOAgCAAAAYKaeTAAAAAlwSFlzAAAOwwAADsMBx2+oZAAAIABJREFUeJzs3Uva8rB2oNFP52EE1U56yfwHVM1qV6bgNDiHEDCybMuWtLVW67+AMWCuL9tOy7L8AXQgpfT39+dJCQAAAAAAOCnpDUAPngX0Xa1np9eSPd0BAAAAAMAk/tF6BQBWCugVS77uUgAAAAAAgK6IoECnzjfL7yXooAAAAAAAMAMRFIhJ7wQAAAAAgGmJoEC/hEwAAAAAAOAAERRob1mWugtUTwEAAAAAYGYiKDCR6rUVAAAAAADokAgKdO3ATOevsyigAAAAAAAwCREU6EKtQmlHuAAAAAAAgAgK9MKkJgAAAAAAUIUICvSufLgzc0qFFQAAAAAA5vFovQJAS69q+N0I34PiEAVRAQUAAAAAAJ5EUJjURzLMT1tmWunhU+6SUhIyAQAAAACAQiIosMOzca72yExVLe+Xy7KU7/wWAAAAAABglWOCAru9d8r0L4Wnv58RUgAAAAAAmI09TMKMmlTJ8mebX6uXWYIDggIAAAAAAC8mQYGbdF5eAQAAAACAMERQYHgOIwoAAAAAALwTQQEAAAAAAIBQHBMUZpQfnfx+WigctXyece/CV+06LOiBY4gCAAAAAACBmQQF/pfVcLhZE5dleZ3m/c83sC9cAAAAAADggwgK/I9j8fKK5HlyYLR8CQAAAAAAQDwiKHDKza3R3CcAAAAAALBJBAUucUMcFUQBAAAAAIBVIigwmGf7zBdQ+8IFAAAAAICZiaDAVU6WyMzZFVAAAAAAACBDBAUAAAAAAABCEUGBfpnpBAAAAAAADhBBgavkd1p7Ed0UAAAAAAAQQYE4FFAAAAAAAOBPBIUJNRnQPEzXBAAAAAAA9hJBgX86kBsVSgAAAAAAoEMiKExnuHJZuMLDXS8AAAAAAOAiIijwT2PtJhcAAAAAAOAXERSIwBgoAAAAAADwIoICA9A4AQAAAACAciIoMDyJFAAAAAAAeCeCAv/UeUr8tXqdrzYAAAAAAHA/ERS4ijwJAAAAAAA0IYICAAAAAAAAoYigMKPvGc3Nqc0exjoPrDYAAAAAADChJCEAu6SUnn8ofPZ4nb78LIVLq7JAAAAAAAAgHhEUuENK1Z5t9lZYAAAAAABgNiIoAAAAAAAAEIpjggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEIoICgAAAAAAAIQiggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEIoICgAAAAAAAIQiggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEIoICgAAAAAAAIQiggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEIoICgAAAAAAAIQiggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEIoICgAAAAAAAIQiggIAAAAAAAChiKAAAAAAAABAKCIoAAAAAAAAEMqj9QoAbaSUXn9elqXbZQIAAAAAAOyVhAqYzXuqfDnzVLC6wCpLXl2+Zy0AAAAAACBPBIW5/AqWh58K8gX05PIzC/fcBQAAAAAA/CKCwiyqz2sW5s8DF7FryZ7EAAAAAACAD/9ovQLAHfYGyysWWHiWvUuuftUAAAAAAIDRiaAQXEqphwJaeMZjS9ZBAQAAAACAdyIoRNZhHexwlQAAAAAAgGBEUAjrotx4XcU8s2RtFQAAAAAAeHm0XgHgEk0K6LIsh1dAxQQAAAAAAGoxCQoBNQmK7wX0+6/vjq1eZoFnFgsAAAAAAMQjggIVrBbKzWxZvvDnol5/AAAAAAAAyLA7XIimz2N2Hl7yd/VclsXQ55w273eNHAAAAACAJ5OgwFmZ8vTrv95r1q4CWr5Ygim5c20AAAAAAAA8iaAQjWE44imvmyklKRQAAAAAABEUZnFRHN1crCjLSQeipg4KAAAAADA5ERQC+uiOy7I8/+VMj7y/KuXX1h5xyTMSCgAAAAAws0frFQAuYf6SGE6GzJSSxwIAAAAAwIRMggI9Eq6oxTwoAAAAAMCERFCgDWmKTbU2EhsbAAAAAMBsRFCgGWmK29jYAAAAAACmIoICx53fae2ZNGWXueyigwIAAAAAzOPRegUA2tuVx/LxNaWkzlaRv1Peb+Tyu8+9AwAAAAAwCREUmN3eAcH307+K2vs/fixQdbvasiw6KAAAAAAA70RQYFvg/YievGolZ3+eRnjbpXwM9PUvgbdSAAAAAAD2ckxQmIhK9MENMqJfOXlZlsLS7H4HAAAAAAhPBAW2mWJkFDooAAAAAAB/IigAwZSPhAIAAAAAEJUICrRxPlMZ5ovqnnvW9gMAAAAAEJgIChw3ekYyLxhYyZ07+gYMAAAAAMAvIihwrUxnmqdBznNNr7brlnSzAwAAAABMSwQFWqqeqW7uXpsX5/iUbW3e+IZBAQAAAABCerReAWBsKaUmka9KuypcSP4Kapx13T863GobBgAAAADgOiZBgQsz3q+gNdB8njw2OvcgAAAAAMCERFBgPIfb6snTMyh3NAAAAADAbERQoEgmI/1KkidTZQ/DoOJZGPm7soeNDQAAAACAikRQoILvhlRelfaGRr0qsIZ3ru0KAAAAACASERQotTlL98xIrz+cd6atAgAAAAAA03q0XgEglM1IuVpSl2XZu0/dwiUTxvn7N7OZxfC8duU3VErJowYAAAAAiMokKLBDt8mk2xWjK1GPDPo+fl0yiv0+t335ygEAAAAAtCCCAvucyY1SJZ2bIQp+XMeK+68GAAAAAOiHCAp0QVvlHvG2ll0JU+8EAAAAACYhgsJEfh2Ps8pyzp8rXp1il9v63Axb2uqNqYACAAAAAPMQQWEutfLPruUsy1J4+tuKLGO5815WCgEAAAAAAhBBYTrvPenkTmhLzr73Ivbm1V0LBwAAAAAAZvBovQJAAxXb4XNR38Nz54/xuTmQp4By2LIsYSY+C69L5jQeSgAAAABAPCIoUMEVEeVX2hFsuFpKKcBm9n4tFFAAAAAAYDYiKNCvtnlGHIot0jAoAAAAAAAfHBMUYJ1CNjP3PgAAAADA0ERQACaVH/YN00HtCxcAAAAAmJAICvBTmAzWv1Y39RUVsNZ1Sf+yecpf1yJ/dgUUAAAAAAjMMUEBclJKWhEl3nNj3aZrIwQAAAAA2EsEBdhwIGhJVlO5YYxVBwUAAAAA2MXucAHqsx/dgWTiYsn9eNt9XfGClmWRVAEAAACA2ERQAAAAAAAAIBQRFOAShkEHcnIYFAAAAACA3oigADQ2dGjsZL+y5avRyQoDAAAAAFxKBAWAnM1Ge0NWdBRPAAAAAIBdHq1XAADaW5YlEztTSvkGWVgoj828VsyfSioAAAAAMAkRFOASahPfbBUAAAAAAPewO1yA+rSuEY1+r22u/+hXEAAAAACgnElQgBzdqLk774LMTnE394jbuaFXHgAAAABgL5OgAD/pRrw7dkRPAAAAAADuJ4ICrFNA5xTyfg95pQAAAAAAMkRQAAhC7AQAAAAAeBJBAehXb1VvxD3i9nYbAgAAAADcQAQFgP8lXw0776AfK6+AAgAAAABzerReAQCgJuETAAAAAMAkKAB80hEBAAAAAIYmggIAAAAAAAChiKAAsCIzDNr5YUEBAAAAABBBAWA3HRQAAAAAoGciKACsc2RQAAAAAIBBiaAAdEqDBAAAAADgGBEUAH5yZFAAAAAAgBGJoACQYyAVANrywyMAAAAOEEGBeflCjZNsQgBwAz9IAgAA4AARFICWdEQAAAAAAKoTQQHoUVczH44MCgAAAAAwlkfrFQCAsaWUukq2ABDGx4+NvOACAABQziQoAGzzrSsAAAAAwEBEUIB1dnMKANAVb88AAAAoJ4IC/OSLNt45MigAtGXHDAAAAJQTQQFyUkr6FgBAE6onAAAAhz1arwDAAA50UN/ZzSal5E4HgOq8vAIAAHCMSVCAS5gfDcn3sAAAAAAAQxBBAWgmWCoOdnUAAAAAAMYlggLADvlhUB0UACrywgoAAMBhIigAAAA9siN6AAAADhNBAQAA6J2pUAAAAHYRQQFgH3vEBYD7mQoFAABgFxEUAHbzPSwAAAAAQM9EUID6lmURyWZmGBQAAAAAoK1H6xUA6J2cyaplWcROAAAAAIA+mQQFgPr0UQAAAACAhkRQALiEDgoAAAAA0IoICvCTQ3uSZ/MAAAAAAOiTCAqwTt8CAAAAAIBBiaAAcFw+ltsjLgAAAABAEyIoAG1MEggnuZoAAAAAAF0RQQHgFHtOBgAAAADojQgKQBvaIQAAAAAAFxFBAWgj0n5iHRkUAAAAAKArIigAAAAAAAAQiggKQHfi7SnXMCgAAAAAwJ1EUACoIF64BQAAAAAYlwgKAHU4MigAAAAAQCdEUAD6YqQSAAAAAICTRFAAuIlhUAAAAACAe4igwLxMHFKdjQoAmvOrIwAAAP5EUACoy5FBAaAtv0kCAADgTwQF+EWs4iI2LQAAAACAqz1arwBAM5st6v0ERgoAAAAAAGAUIihAkY9iuizLd0MVSsvFnoZc3TwAAAAAALiN3eECHLGauNK/3L8+9MaRQQEAAAAAGhJBAeqTuAAAAAAAoCERFOASOih5thAAAAAAgOuIoABwCceIBQAAAABoRQQFgKs4MigAAAAAQBMiKAA0o4MCAAAAAFxBBAUAAAAAAABCEUEBLuF4kDzZEgAAAAAA7vdovQIAA/joWPldmIpefFiWJbPNpJRsMwAAAAAAdYmgAD/9SlOSFQAAAAAA9MzucAHWKZ3cJj9bDAAAAADAXiIoAFxOUwcAAAAAuJMICsDd5hx8zHfQOW8TAAAAAICLiKAA0AUdFAAAAACgFhEUgI7YbSwAAAAAAOeJoABwE4kXAAAAAOAeIigA9MIecQEAAAAAqhBBAeA+m8OgOigAAAAAwHkiKAAAAAAAABCKCAoAt3JkUAAAAACAq4mgAHC3fAe1R1wAAAAAgJNEUADojg4KAAAAAHCGCApAL6baT+xUVxYAAAAA4GYiKAC3MuP4ooMCAAAAAFxEBAWAHqnFAAAAAACHiaAA0IxhUAAAAACAK4igANApw6AAAAAAAMeIoADQkmFQAAAAAIDqRFAA6JdhUAAAAACAA0RQgHXiE7fJD4PaFAEAAAAA9nq0XgGAfp2JT/ZxCgAAAAAArZgEBbiE6T0qsjkBAAAAAOwiggLzMqxJP2yNAAAAAAAViaAA3MdE42FuOgAAAACAciIoAHTBMCgAAAAAQC2P1isADGnXUFq3acdoHWNJKXX7aAIAAAAA6IoICuxzIBy+zrKr32QuSAciqmVZ8g8xHRQAAAAAoITd4QLdSSltdiBDnESlcQIAAAAAnCeCAvcpKZfldbPzDiplAQAAAABAKyIosMP57rg54llxaQ0poJyR33663ewBAAAAAPrhmKDArTJ151jaufoQiXLmbdzU5RwZFAAAAAAgzyQo0IUzw20XDcYty6IzAQAAAADAiERQ4D6/mqLde07CHV1uM8C7MQEAAAAAMkRQ4HLLv7ReEfpl8/imgwIAAAAAHOaYoEA1xzrWZsh5LTZzSodIHJ17EAAAAACAikyCAnVcUbA+5kfz46Sm4ohHGAYAAAAAOEYEBaA9te8Y7R8AAAAAYJUICrSUSTi/qphaxlQcGRQAAAAA4AARFIhDDQIAAAAAAP5EUGBEhkGZimFQAAAAAIC9RFCgRzIn7KKDAgAAAAC8E0GBOg40mCuyjRRESH4WAAAAAACwiwgKVJPeXH1Zv5rQrlYkLAEAAAAAQEgiKHCJe1IozMORQQEAAAAAyomgwIXurzI6ULfcNefpoAAAAAAAhURQ4FoHqoy91AIAAAAAAGeIoMDlTKdBLYZBAQAAAABKiKDAHYQZMsz+7uLmAgAAAADYJIICO5ypL8N10OFWGJ5sugAAAAAAj9YrAAzm2UFTSt9BNF56Wb2a0NyyLPEebgAAAAAAFYmgwBGraXAzzPTWFEsyUt3U1NXVJ7DeHmsAAAAAADezO1ygpmVZ8ull8vG1lNLktwC1aJwAAAAAABkiKFDfDXlGSoQ8jxEAAAAAYGYiKMDd1Cmq2Py1gS0NAAAAAJiWCAp0R7mBWjyaAAAAAIA5iaDAJVodsHCUAyXOlqZmu763GWWDBwAAAAC4mQgKXEL0ytOuXtwUAAAAAABUJ4ICzRyuX78K694Fym8E4MigAAAAAADfRFCAu4mv1KWDAgAAAAB8EEGB+s4Xl8DNRgEFAAAAAICrPVqvABDNrn65LMuv06eUVnvhbX10b63cXDH5k+tkHkpPvx5QAAAAAAAhiaBAqVdiyaSUq0NgZvnNA0/zFYA8HRQAAAAAmIcICmz7SI+HZzGrz1YeXjLEszkMCgAAAAAwD8cEBRrTL6EWjyYAAAAAgCcRFGjvZLkRfqCQUVEAAAAAYBIiKLChVjW5KFWeWawgRDybjwibPQAAAAAwAxEU2FAlXm4upMk0pxFSAAAAAAAISQQFLlfYGg8kSRUTvhkGBQAAAAAQQYFtZ1rjrvNed2KYig4KAAAAAEzu0XoFgDEsy7K3mhyLlM9z5S+rVv7UgQAAAAAAICSToECpZVnKd2x7slP+Ovv5JcMkDIMCAAAAADMzCQrsc1uDFDvhpM0B7pSSBxoAAAAAEJJJUACuZeIQAAAAAICbiaAAMC+JGgAAAAAISQQFgLBK9nargwIAAAAA8YigABCZo34CAAAAABMSQQFgdoZBAQAAAIBgRFAALqSu9cBOcQEAAACA2YigABCfneICAAAAAFMRQYF5yUJMZXODNwwKAAAAAITxaL0CAJ16D0JyKZNIKdnaAQAAAIAARFBgXuVzb3sn5GSkQm6omy3LYtwTAAAAAJiB3eEC1KczMS5bLwAAAAAQgAgKcAkliT6ZvgUAAAAAZiCCAtCGGtctCR8AAAAAGJ0ICsBVtLQ+yc8AAAAAQHgiKADwScAGAAAAAIYmggLAdEqGQXVQAAAAAGBcIihAfcuy2OMonbOJAgAAAACBPVqvAMDwxCQGtSyLcU8AAAAAICQRFGCdtAkpJQ8EAAAAePdf//6fzz/8n//3f9uuCQB5docLQAPSWic27wijogAAAPDyKqAffwagQyIoAAAAAAAAEIoICsAlTBCOwjAoAAAAABCPCAoAAAAAAACEIoICcDcHBO2NYVAAAAAAIBgRFAAAAAAAAAhFBAUADIMCAAAAAKGIoADUJ5iNSAcFAAAAAMIQQQEAAAAAAIBQRFAAbrU5bkhD7h0AAAAAIAYRFIDK7DR1aPkO6s4FAAAAAIYgggIAO+igAAAAAED/RFAA7mNvqwAAAAAA3EAEBaAmY4IBbLZq9zIAAAAA0DkRFADYTQcFAAAAAHomggIAn+y4GAAAAAAYmggKAKywU1wAAAAAYFwiKMA6geeA/I1muHA47jIAAAAAYFAiKMBPOijkeYwAAAAAAH16tF4BgK4dazzm5765TQAAAAAAuI1JUADgJ0cGBQAAAABGJIIC1CcLEYkpXgAAAABgOCIoAHCK6g8AAAAA9EYEBaAOJSwww6AAAAAAwFhEUAAuJ6GFJ4EDAAAAAF0RQQHqm7D5aWDhbW7VtgEAAAAAoB8iKAAAAAAAABCKCApQ2YRjoHlukDDclQAAAADAKB6tVwCgjc1dd5b0ntdCxCEmsSxL5rGTUvJYAAAAAAB6IIICHKf3PDkYJAAAAAAAXbE7XACgGkUcAAAAAOiBCArAKfnoZVg2HvcpAAAAANA/ERSYlJADh3n4AAAAAACdE0EBVmg8VbgZ52SPuAAAAABAcyIoAFCZDgoAAAAAtCWCAnCc1jUtY74AAAAAQM9EUAAOyhdQkWxyAjkAAAAA0JAICkB9CugM3MsAAAAAQLdEUADgEoZBAQAAAIBWRFAAjtC3+DMMCgAAAAD0SgQFWKHwQRUeSgBwntdTAACAA0RQYFL575LMt+W59XhxdwMAAAAAHRJBAYALGV4BAAAAAO4nggJQk7nACbnTAeBSXmoBAAAOEEGBSfku6TCDfQAAAAAAdE4EBWAHRwNllbseAAAAAOiKCApAHTIYv5geBgAAAABuJoICrNBsoC6PKQAAAADgTiIoMClJ5gA3GhlGgQEAAACAfoigAOtSSprfO7cGm/Id1CYEAAAAANzm0XoFALr2nm0MumW4cQAAAAAA6IcIClCqZI5tzhY457XmgJSSrQUAAAAAuIHd4QKTuqjERN3hZ9TrRXUaJwAAAADQAxEUoLJ4vTB/jUQvPjgyKAAAAADQnAgKAAAAAAAAhCKCApMyjlbIGCjVefQBAAAAAFcTQQH4SaziGHUcAAAAAGhLBAVg3WYBFbo4TF8HAAAAAC4lggJUFiMNKqCcZAsBAAAAABoSQQFqEn4AAAAAAKC5R+sVABjDd918zko2rJ4ppYsu3RgoN7huAwYAAAAAEEEB1m3mmbb95tkprwixDtZILcuy2JwAAAAAgCbsDhdgRecDah9hqWJnKllU5zcOA5FIAQAAAICLiKAAg1ntRlVikgIKAAAAAEAMIihAECc7qALKFTa3GcOgAAAAAMAVRFCAOI71pJSSEAUAAAAAQCQiKMBINmvl3pxZePplWYyBcowtBwAAAAC436P1CgBQ2atrZuKT0U8AAAAAAAITQQFGsixLeb98nvI9hR5on8b4OG/XdgsAAAAAcJ4IChCc+ETnUkpaOwAAAABQl2OCAqwQDv8cB5QbecQBAAAAAHWJoAAAAAAAAEAoIigAn8yAUp0tCgAAAAC4kwgKsKLbYPNrr6EVV7jb687o8puWPeICAAAAABWJoADDe7al8/HSACht6aAAAAAAQC0iKEAcZxKm/AkAAAAAQBiP1isAwCkf8fL115KhOuGTmy3LYtwTAAAAALiBCAqwIqU0eiAcff0BAAAAAOAwu8MFJhWmEZqrAwAAAACADyZBAdZl4mKYgAr3y+8RN8AQNgAAAADQAxEUGMN7NWneSFYTTvO1AgAAAAAAnkRQoF+/xsVe/95Vd+xzraBDhkEBAAAAgKs5JijQqZJDXZ45HOZ1h9J0kE4AAAAAAGhLBAW6k1Iq74iKI4zIrCcAAAAAcCkRFBjePB10nmvK5GzqAAAAAMBJIijQkV0zoB9nrL4yHTI8xzwmeVADAAAAABcRQYEgpk0myiiDsukCAAAAANcRQYFeTFsxAQAAAACAukRQoAtVCmgnGdV8GwAAAAAAtPVovQIARV5l8ebSWV40U0ryJ+yyLEvmEe0xBQAAAAAcJoICvfuoIM+//gonFavJ3uWoNQAAAAAA0Am7wwXa62Q3tgAAAAAAQAwiKNC1X+OVV49dGuuEe+Qfa34hAQAAAAAcI4ICjWUihxIJAAAAAAAcIIIC0Rgdg7EYBgUAAAAAqhNBgVFNOCeqBgEAAAAAQAkRFOjUhI0TWCX/AwAAAAB7iaAAK0QXuJMfPQAAAAAAdYmgQEsXtcaoCXM1FEW9sgAAAAAAcJgICrBioLm0gVYVAAAAAADuIYICAO3lc76JZwAAAABgFxEUAAAAAAAACEUEBQKyh1gAAAAAAJiZCAr0SMUEPtgjLgAAAABQTgQFWCG3wP38+gEAAAAAqEUEBQDG4NcJAAAAAEAhERRgbLIQkRgGBQAAAACqeLReAYBOVYyLtbrOr1VKKUlHAAAAAADwYhIU4HI3DGu+X4TZUAKzeQNAYF7oAQCAikyCAj2KN9p48hqVfB/Ufwf9uAVeKxnsvgYAYJfv97HeHwKTeH8CXJbl12f5Ks+KF33T0uf3D5f6///2H+9/3bwFvm/2eN96AXRLBAVayrzF3zTc++zD73GHu6a/ZHbn+/7XvVvF9+mft/N3ZC2/C3wgAQC4x+obv/c3crIo8OH989pHRNy1kJIzfj9Hnfkeo3yVyv+r1kVwnfwrXXWrzfX9v1YvetejYNfZ/9a+Y/GzeOA2IijQqcMVyvun0e39JPB9+o9/OTYj68Phzcq/SsifbDOKf/z7+zLLG3lmUd8nPvyk9Fqr1c+Hmz8Sz9xQB764KVls4RoWXtD3cjL/tWuBv864uvINX1MGfRa67mvBHvyKMQd+/r/3jIFv1SrOP/n8bW29H8/G7pGXzNepVbyW7Da/jc9TM/vVBTt8ANatSrvO2OGtAe+O1fSTG/bm2Qt/Fn+Pwvdym59AvWLCEERQYEg+dUAw1/20ufyz1kVfmlT8MLl3z9gVV6lKoj65hGMLP/nTh0zz3vwA/JHAS05fuKo9i3EtfjkcY+bZ70UrVW6o8idz98s7twaM6/snd9//CxBPrY+3h39bDNxJBAUm5Sf8AByw6yfMN+zTDACYUMU3Et6TANyjq+dbRZZ5iKBAv4Idl/HwddFrAQCAewT7FNbE9371f92qPugB0ISXe+YhggKN5Qvf6kty/nBNtS66KwOtKgAAwMdBlAs/zgT74GNP2gB0SwdlEiIoMJi6Hx2fL/a/ltnVW4H8qgIAANzj/VNJPnPedhBlAGAvHZQZiKBAe5vDoOXLObwCx854v2C/jAYAAHqz6xOHjycAAHRLBAUYzN49SgEAAAAAwGxEUCCIgaY5a7niKm/u2Or9QlVYAAAAAAD6JIICXTi5l9cJC+hFVm/JXzdv4Jt99aAIz0109eCs7xtwrV0W2/UxAO9OHh3843Xt/ZXu9QL3/lp25rIu1fO6vRxeSTv8AGjlzMfbtgfV+3j5rrvMw0t+//gcz3/9+3++/zVzNTO3pNd6gHuIoEAvJB/6sRmDv0+Q/9+Kq7GqySfMzY/6v8Lwr8D8fYJdzwmZz5Obt8xH4d78aFq4wMK1/Vubt/51uZ4nh3DsnspXk9cyCx9330vOLHzXGn5cXGZj/rWEkh0MRP3K7LwrXmJef/5YeM/3Qs/r9nJmJX+d9+N5wIsCMLrDT5VdNba2q3HFpZ9fZid3TXOZ2+GGm6jt+4Tyz0Tfp/RWB6hIBAU6cuZbY5hZk0fB5oWWh+H8tPHeoFiybpnTV2kAZ1YgvwTPeKM4fE/YPzhUAAAgAElEQVSd/KLk2GPtsGOPPps3HJZ5kfqe6AU4o/PX5c5XD3rQ/GFSvgL3f0DI/PZ08zTAWERQoC97v7hp/pYOAACqO/a9m2/rYHQHvn+vuxNUH7GBGZz/gelLyTNnt+/QPOczAxEU6E5hB/U6DTz5sgaAQXX7jRgM7cwcz+q7yjN7Xj3zTvX+t7jeVAPsVbGnVnRgl1oQlQgK9Gizg3qphnnYsx8Ao3DMTih02we6Khd0xSF+AeA6Xn3gRQQFOrX65ZGXcAAAmsvXTe2TgfiEBQBAYCIo0Dsfy4HNYVB7xAXg5fWi8HrtsFMB5vS9V1jvlwAAmIoICgAAQAPvkXLzNMeWfGYhxPax1f3aSEqq4eG+eOevuORPAAAmJIICABGYbwCo6OZqKFJS1+rsb/5NQpODPnrfAgAAlxJBAYAB2JMhEFL5HNjHLl6/h9hWj6cO93htnP1UvX7WBDZ9PG/nh+Nt2wAA5URQACAOXwwBfcqEyfJm+X7K73Npn1zn+9CSf2udxkswHFD47O1JHgDgABEUABhD4TCoDgq05XtqbpZ/1au+u3gvskyr5NG0943o6ktGfiHe6wIAlBNBAQAAigic9KO8guglUEXJQ+n8w+3XEjyQAQAOEEEBgGEYBgUqes30vO/eU+bkNh/7mPXKBRPywAcAuJQICgCMRAeFaV2UJ/MH2oRCJ190rnvN8moIAABMSwQFAAAq+6iJJixp6FUBv38f48B70Jv30fy2a3KR6ofpBQAgQwQFAAZTPgz65zsm+O3OKqmAcsz3E/6ZZ/Xv8+aX5hUE7hf+cRf+CgIAdEUEBQDGY6qMmb1v/K/Hwvd8292rRVDlz7fvA5cf/3JyBc4vBAAAgAmJoADAkMyDcptM0WneGl8r0HxN6NnNh6v0lAsAAEAPRFAAYFTl80mO68YB31uX0EhznsoAAACgkAgKAEzBSOjMxEu69XxS8kMNAAAAqE4EBQAG9uoHhadXGkLSOGnr/LOK5yUAAACoTgQFAOaSOb4jVXyXZpGS0ZnXBAAAgOGIoADA8PbOgz69nz4fNj666XsIObaX3Y+L3uyy3yf4vrKZ/7pfD+sAf7V/66CAAgAAwEBEUAAgiPeauFfhGV8n+zj9meb3ft7N5WROoDsyLnERAAAAqE4EBQDiONNBgRKCJQAAADAEERQACEUHZXKHd86sbgIAAACRiKAAQDQ6KOO6v0RqnwAAAEBIIigAEJAOyv3URAAAAIB+iKAAQEyvIqWGcoCiCQAAADA0ERQACM5UKC/PtOkomAAAAADhiaAAQHymQoe2mipTSocTpvYJAAAAEJ4ICgBM5GMQkIt8VMaPG7xKgxQyAQAAAMgQQQGA6ezqZ+8BT3g7xu0GAAAAwM1EUACAHAEPAAAAAIbzj9YrAAAAAAAAAFCTCAoAAAAAAACEIoICAAAAAAAAoYigAAAAAAAAQCgiKAAAAMCMUkqtVwEAAK4iggIAAADMaFmW1qsAAABXEUEBAAAA5pJSMgYKAEBsj9YrAAAAAMCtzIACABCeSVAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBQAAAAAAAEIRQQEAAAAAAIBQRFAAAAAAAAAgFBEUAAAAAAAACEUEBeC4lFLrVQAAAAAAgE8iKABHpJSeBVQHBQAAAACgNyIoALt9hE8dFAAAAACAroigAAAAAAAAQCgiKAD7mPsEAAAAAKBzj9YrABDZRy9clqXVmgAAAAAAwDxMggKwgzFQAAAAAAD6J4ICXCKl9N0LoxZEE64AAAAAAHRFBAUAAAAAAABCEUEB4Iioc70AAAAAAAE8Wq8AAIzkvX2+/myHwAAAAAAAXTEJCsApU/W/X9Ofq4eABQAAAACgFREUAIpsZk4dFAAAAACgEyIowH1GH5oU+Ta5iQAAAAAAeiCCAnDc6Fm3XHnd1EEBAAAAAJoTQQEoMnnbmyf3AgAAAAAE8Gi9AgAwhtUOOnkbBgAAAADok0lQ/pu9O0tzHNfWAxqsL4dhv/nOf2T2FOgHVShVaigQRLMBrPV0TlaIYk9g/wIIQD7JKAAAAABAQEJQAAAAAAAAYCqmwwW+exzWlv5mxPunmr1M8fgbL27FqU8dLG2mV0vOtC0AAAAAAMxECAo8T935mGy9zup5+5eD9OvtRxqkZY/f+7iSbycm/boVbz9YcEMO9nkp7UNoAAAAAAAIQggKq/sUc6Z86ildO/hg7UDuIOn8+qn0rfj0kVO+rmr2wj+teZGd7yWXAAAAAAAMRAgKS7uYbH0dcPn2I8Vz0FJbkb6cqmNb8xaeHV1nKxjWDj1W9e2eH3qLAAAAAAAmIAQFrjqbQcZ8L2aokY6ndlHG/v85mdJd3znXx9eemrT5ytIAAAAAAJjAP71XAFhRqMQxT+1NSB9ZW3X5RVzflreTNt99+sinmYc/LS1lJb+u2I9IFQAAAAAgACEoQKbuOWiReYBrO/Utee92TVzg16QzOwoFAAAAACAaISjAkIrEdd1z3CIf+brASummYaAAAAAAAGEJQYE+gg+52x8c/NmVrQiSltU7EMEP8SeJiemgWwcAAAAAsIg/vVcAGMA9rksJfp6yvQhZ0an1/3nZhH3fy27FfflfV2zbtrdZafe9+jXB7b6GXQQJtgEAAAAAMBIUOPJ1KOTr33/9l5ae1j9lc97+QcGtqL38+wITB7P+1JmBNvuzQXLEr28PbbYmAAAAAABkEIICH51NNIPEV18drGftTSiy/OME7m3qeTbMPlZkUW8D2lFOobeGXnkAAAAAgMmYDhd471OiU3Bu2E9zvZbSJpSqvRWnfE2pz867+1N61GONscKPSzg74/HB35+dizjUmQAAAAAAsDgjQYEyxop/Aq5t2SywlNoJ6PUFnh1L+jpDcsH12bbNTLkAAAAAABEIQQEW0iD9/ZQC1khAi3zk1HJSMk5RKAAAAABAd0JQoAypT1/pSd7FMPL44xFOg3pB76mti7ArAAAAAACWJQQFzmk2zg+acfYCAAAAAExGCAq8IRNaUNWRiy3PqHo5vesCAAAAAGAUQlCguk/RkUgpuEEndK16XjWbdhgAAAAAgCv+9F4BgLEtlXXF2dg2a7Jt2+sXxdkJAAAAAAB8YiQowAzSR216qysAAAAAANMTggLdjDXb6hwZ4fWsFAAAAAAA4hOCAkFtD3qvy8/PCKHg1zVssAmfouL4ew8AAAAAgJkIQYFzmr2L8eD/Li7vEBzvwznGuR7LOItW2C0AAAAAAFMSggLhvA2r5KAp3g6fLTWaNjERNBgUAAAAAIDuhKAAIZzKCFPyyPTJhJuNd+ybgx5spoAWAAAAAGAyf3qvALCuseYa3fe9alRWe/mn1FuTr0tOPCu2bSt4/oTa+QAAAAAAXGckKMCQ9n0vkgK+LuRtHHjqu66smDASAAAAAIDrhKDAs7EGaH6SsRW1Nzzgjq23SgvuTAAAAAAA4hCCwtJek6SUbCnjU6c+8vY/nf37GvJ2V9XlZ48HLTWQ9Pgrqi4fAAAAAAA+EYLC6h6TqvTUKu9T6R95+oPif//z3xQwPRFM3/CnZVZNBM8uvGNsPPf3AgAAAAAQxJ/eKwD0lz2UcOi/z/5U1bdj7vt+eylm3uZ/faFms730+NlTr/mUXwIAAAAAcJ0QFCCWi4nj7X+85o4dw8WzOWjZjwMAAAAAsCAhKMCEoo2nPEhnX//m7X+6f7DSYNbXqDXaPgQAAAAAIJ0QFIC/ag8hzV5ag+mRs+ciBgAAAAAmkzecg1CEoAD8y6yzmi8AAAAAwHGl1FCKUQhBAQAAAAAA4MRAkW3b2uSgtWfvm9g/vVcAAAAAAAAAOjs7VV6DqfXefoUp/RIJQQEAAAAAAFhaXrJYL4/ctk3YeZEQFICPzKsAAAAAAHBAVBmWEBSAfz1FnhJQAAAAAGAFoYJMY0BLEYICxLL96vLt+77fsk8JKAAAAACwguvF2ILl3JRFKd4m+tN7BQD4jwgPsAjrAAAAAACwFANAyxKCAgAAAAAAsKLj3PFpuEiEkNIIlnSmwwUAAAAAAGA5pxLQt/+SuKjrK/N1BXglBAUAAAAAAIC/PsWNlWJICWgNpsMFAAAAgNO+Fiv3fU8fFJJd1rx/xfHYlJSRK0qrAHDF8QP3Io/pDEJQAAAAAAaWN3KiwTu9Tn1F7Tn0Upbf+D1np0Li69/V5osAmEPjB8fZWXlJJAQFAAAA4JLEKOtewmsctnX5Rr5qeVBGPAGUvAEWMeJDahRCUAAAAAC+KFKeU+ODdKWuF2EqwNDcxq8QggIAAADMTwAJa4pz7X+dAFmhH2js003p6+2o4IzuboxVCUEBRnV/QHoWAgDQ161p2uvNSdrDx+LkH8Divt6O8t7vCxDKtm2v8//n3bvc8a4TggIM6bFjkF3U8ByFQTUoNF/5HWK91Stbw31aw4sLr3c4KlWuz27+8Svcim9+3lYX/Clu+jfWWOxYcUWz5sQou6XBDmm2KzKuqeyf0l/8lvlmjBzlhAdor+odMs6DABjaLQd9rd++3mSO72mPeSp5hKAA42kz2UKKt49hcziwpqczv0E00rE8mvLVZaPQGhtbdpmVeib1jnKpYOPxv3Y/3O0vihqR/3DJR5tu+UC7peoOabwfCn5dwd1SdSd0Gc/6M9QZDjC3lBvy//1f/yf9I2ogsKy3N4eMVrEc9CIhKMBgQpVIMlam3qxlByuT911fq2BthkM1djCAI07XLtRV8EnxKuoQW13JKNtevGcyyobfFdkDw231zzjpTj265TTT5hopdUoPekUDUFC9Z8Hjo6rgT3JfVzhlHqADWolw3dkLk0dCUAD6aFkyvtLryBssNdaAsCLf3ualXMMVEwUD9kC24c52qMflQHvpzy/nJwBdHDyAis950/HjNzqVs6r6ypsGK9D+hSx3veYvGZEQFADKKxv8KK4NTQoIrMC9rgHtgcbscAAIouVD+TjWemrxtvk5+DRqH8fH5Y9yRK7/yGCULe1ICAosza9mJhC2PrXsRGr1WmDD7YqCbDsAQDRlJ5yM4GIzPuZG/XzeroP3m4TdFqC248v/038dMX5rrP277TseiIMo/WAi6zxy0K+EoMCiHh8zzR7DRZ5JHWdaKM5z+qtpjvV1dsWyZrrpkcIRB1jZvXcw/bNgyufdcPHhQW+0eJEaWIebRhDdc9Cfou/rPaC+ekwICtBOqWfSlB3mPPYDi3DVAytzD7wZej+oy/Dk6ymxQhoa7aJ2ndaW97K6U596+vtQJxjAgh6f9VWfs3LQA0JQYEUdewKeSY+u74pohQPqGfdYL37JL7X5S23sW8vugYIb7l43AbvilX0yn5QBf49/c+UcGPfGCNedvXae/v7t5bPCLwwAEjVoZmgJdycEBZYzR0NfLWARDjSMonjHZuXLf6xtd+h/mnTsh6jYttwPN5H3xp26T3evd5Wv95nEo5byZ04AIlj5t8iJU/42cOWZNUQzAKCvlR92x4SgAKO6UiRNfChW7WCUejCPWCyeW70m14jHevHxYetc5pVO+9obXjZNKbsTLr5ULG/Tzn5p1dvd05ocTG2XPuvdpxV++qKzu71xT7vU133avWc/3rfQ8PXbDwYAHfx9yt88LfDTaVNw/wR/EHSUl0SqkV1nHw7k4sGK3xYdQql3A339m+sHS+YKJKp3l3h7u3NTyiMEBRhYXo04ve9xsZdysbyYLmandM2ySO2t/nTOL7K3429mvR8eRtv265P7JWq54dF28k/RHL39l173aU2KD+l4nTovYyHDuV4QL7UmVV2cRzH9b+rtkIBtvDZGOcfaiNnaLyLOpjnljsU5UnxV9neob//9//3v/zn1jU4e4JTjnqBbyllCUIDhne2PNZseoUvtPsgrT4r3u+I3cRofbrN8xLTOQVlnSwFqi9/Iqc0zJUW0JvFkrf3i0znEOVIQwdlLzBUEQ3CpjkIICjCDsDloe3FeeVLW0Ctfgx0CAEObu2ykoVJJkR2bMZ1Dgxkger2dseocHimXeXpPNjtbDfKCBrcF0pU9WxKnrJ/7ucxMTFjNWUJQgEnIQQEACGWR4pRG9Vgyjtd8hzjUzECfXnt2/C7bUy/8LiV72O58pxADuXIlJlrkcU8EjydqqYkHPi0nu3Dqnh+NEBSgqVCvxpSDAgBQw0z1UA1maO/rddfxwnRPgCdBLoqDtyMd/Nnxyj/+ceSxs9HeA/V2NR5XMsg5c0WoE4BjQlCA9z41bj49p78+/Jr92FYOCgBAM7PWgDSSAWAgNca8DvfGpSBrdbwaQVYyRa+q6cH3ztrwrkoICvDs7WMm8g9Rn8hBAQCobdwSjKYvAADZDprB2pkBCUEBJiQHBQCgoHEjzxttXQAAzgo1GHT0BnkvQlCAOd2elOlPRzkoAACPRqyzaNACAHDK8WCSx5Jpy+axUm0pQlCAmZ2KQj1cAQCWNWLk+Ug7FgCAPF9z0MSFFPzS9O/lmBAUYH7ps+PKQQEAFjFiVUVLFQCAgPKaqWffaFZ8BVYgBAVYwqkc9MeDEwBgOiOmnjeapgAAVFUwjyQUISjAKk49yw0JBQCYwFilHO1PqEcXDwCOZeeg3Z+wpVbgvvndt6ggIShQ0tnnxEz30yHIQQEAJjZW5HmnzQkNuNAAoIaLT9jrI1CLPOKf1mGmsrAQFCgj72Y90/10FHJQAIA5jBV5alUCABDcrcma3swu0sS9koPWSEDv/zhHA14IChRwpf4S7X4aamUqkYMCAAxK8AkAAFUl1k4LtnW9kbQeIShwlRv0iOSgAABDGKKxra0IAMBMDoaEVmr6dhmEugIhKHDJEEUZ3pKDAgCEMlzTWvsQAICJtW/uphRsy67VcH2Qs4SgAOsy0wIAQHfx22PCTgAAaEPbuywhKJCvSL3Gbb2v9BzUYFAAgCLip54/WukAAMD4hKBApuPaTeIk5morEZzKQX8cNQCA88IGn5p2AADAk2m6CUJQoLz7LfIgXZvmNjoH8+ICABQXuX2lNQ4AAExPCAoU9lRPka6Nwry4AADXhW36ar8BALAOrV9uhKAA/EsOCgCQLmze+USzDQAAuOje/RmrfyEEBUoa6w7IKyN3AQC+itle0hQHAIAbQzhKee37jLVvhaAA/zHWTbyGxBzUjgIA1hEz9fwRfAIAABUc94Bu/3WIzogQFODZ4y3+bSI4xP39CuNBAQB+omaf07dFAQCABmL2d8oSggIlvY4OHP1O+nb9P23UTAWplBzUYFAAYD4Bm69aXAAAQDRDFIeFoEBhj/e+gCWkqoa476eTgwIA64jTcNW4AgAAhhC/OCwEBcqLU0KigfiPOgCAVwGbrNpUAAAABQlBgQ4mru9Mlgh6OSgAMI1orZqZGo0AAAABCUGB1pR7xmJSXABgUNFSzxutJgAAgDaEoEAmYwTX4VgDAGMJ0nSRdwIAAOO692gOeljBh8cIQYGmIt8Qi5h1A7/moMGfdgDA9IIEnz/zNggBAIB1zNGvEYIC7STeN28FrOM/fixyzXE7BgDgrAjBp7YoAAAwmWm6Of/0XgFgVGdLTqcS0OPlP/2nCMWvm2meDW993bo4BwIAmNj2oO+a7Ps+d/MPAABgaEaCAjlSSk4ZJaHXdPN1IQ2qXYpZn3g5KADQS/dGiCYiAACwgpn6PkJQoIoaN8pPla+y3zXTLb49bwYFAArqHnz+aBwCAAArOdsDCt5jEoICp32tRhW88X0N1SSgjRkMCgDU1rexoUEIAAAwByEocNrXGOz2X8tGoaUWxXXHJ4DBoEPIvqYcXADq6d7k85gDAAB4Ne7AGCEoUEupKPTg9qpQFZMcNLKL7ZX7xx1iAArq1Z32OAMAANY0aKh5lhAUyJH+04/io0If16H4MmFiZVs20lAArjDhLQAAwCjGTUyFoEALxYcGKl31Ne4ECMuqd7zq/dABgCm1b0J4SAEAAKzpn94rAKyiYMFLJSuC46MgIo1j27YGh6PNtwAwru1Xyy/d9127EQAAuGLKkteUG/WWkaBAjry7ZJHxoCpZkK5xg8brYAF41fJh5DEEAAAU8diRqf1aqLOdJh2fdEJQ4LQrlayLGYn7eyjHk+LKw7rr8pMus+MC0H64Z8uvAwAA5nZc8Lz9j1LdkOyxRgXX4YoI63BMCAqcs85Iea6Tg3bU91J16AHW1ODp4/kCAADUk9ipiVD7irAO8QlBgROOnwGP91xZ6SKOB4PSRZAjEucnaQBUZbZbAABgDqd6N2pfQxCCAgW83utv//L2sXHlJyp+3jIchyy+4wN0sbTtBACYWJv403MEAABooP24giAjGR7N1/8SggKpPt2UG98ZZSpwoPh71A9+0JC+Sq5ZgDl42ScAADCl7M6OwldwQlBgPB4toZgRN45TB+LURXRxsmvXLMAEjPsEAAB4lV34UlZt4J/eKwAM79OduurIUY+HUNQrI6iXgBb57LZtLluAEW2/qn7L/qvqtwAAALwatGalA5XCSFCggNdfu5R6clR6tygtOVINpF9xRY5F9hy5TgaAITQrAXgoAAAAfR13fxJnR8sreZ366oC9p4Cr9MpIUCDV8U1t+6+M5R986tNXD/ojHSircQJ6cWkuW4Cw2gz6vDHuEwAA6C49hnz9vy0V/+q3Czz4lnG7b0JQIK7He6scNLivGXmzNVlNrwT0vsziP3MDoL2WE96KPwEAgPjOxoRlu1QNOk1nv+LelRurWycEBU64fmur8SbCgg8Y2QyzqtoukYMCjOjiHB7pBuoeAwAA68iYmHAyGaHmcHtGCAqck32b+3onTVmy8aCRDfcInEDimR/wt2M/LluAfmoHnwZ9AgAAs5qsjzPZ5rz603sFgPHs+362cFbwZprx7adkL3z6B8ZFMV/fPbQ4Cej9i+SaAGE1u0V73AMAABCEkaBAjsSf9lcaARCzuCb+gbPXpqsGoIEGE97eGPcJAACswGyFAzESFLjkfsd/vMVfmTL3vpyvc+cGfKgY7HjM/iko2jDQx288dW06KwAqMfQTAAAggz7OTISgQBmlng3py7n95a3AN/eTaaCUKGY4PZ+wCej9e8/moD+zX8UALdV+FrtjAwAAowtewxyoIBycEBQYm4cBBCQOB2ivwY1XuwsAAJhDpeLVY3h5cerExBkTOeadoAC0Ixi7LmUfRngrm/eDArRU9S5a6S3vAAAAU9q27amPdqXL9ro00hkJChDdWDVHQwCrGmvfOhkA6jHuEwAAIKD0ztqp0pmBoXmEoMBaRDLdmdG+tlC792xjLtTKA8TklZ8AAMAEPnVtUrok9bpF9TpEpQpft23XcUskBAUoxrOHqhInwm2wJqcYDwpwXZsbacCHCAAAMJ/jDk6b7o9q1SK8ExSgDHXDO7uihqFbZumnxNCbCVBJm/d9enwDAAANKP4UYTcmMhIUWEvKoDRFQKJJbNZEPnXTx4OaFBfgx5y3AAAAY/pUBHvbC7syg5oaWgojQQH+I/iTY47f+MyxFdEEP3V/jAcFSFb19TYGfQIAAFSS0dt67aPpshVkJCjAX8EfMAMlQ14DWdBMe9J4UIBPDP0EAACYw63/de/lpXTH3uagX/uJCmhfCUEBxnB/5nm2MTQBOcCT2q/8rLdwAAAAPrneHUuMQjlgOlyAAcz3qJtviyqZ4G2g2ZwkwPS2bZOAAgAAQCVCUACqUHhtZrhd7eWgwOK2X8WXvP9X8eUDAADMoUaPqVIv7HixqmfHTIcLAEGlNGIGrXGbFBdYjRGfAAAAP+GLQt5ENhkhKMAAHhsHAz2Gg7dpJjDQyQCwrHqPQk8BAABgRFf6MhFeHdW+4KnKmk0ICjAGhc7VaNnc+P0dMChDPwEAAIq794aO+1wKStx4JygA0IE3gwITq/2+z+ILBwAA4EYlaiZCUAD60J44MPHbQB/JQYGZbA/KLlnwCQAAUFxeP6tLkUplLJvpcAFgPNNUw73SAJhDpaGfxZcJAABADfV6cEpnVwhBAajoOOIyO/9bq7VsEnNQZwsQTb3btdsdAABAR7fu3lPXrGAf8HFRFzuA+o/HhKAAAADn1JjztuwCAQAAOJY+Rdnxn13p0L0NXFO+lBRCUGAtnhwEt8jbQJ8YDAqMolJDws0NAAAgmkodwLeLzfsufcmv/um9AgDACbM2bhK3y+8YgF62basx+vOm7GIBAABIpEc2NyNBAagrfVoJAIjG0E8AAAAO9Orf6VemMBIUgJ7ko48W3xsGgwLRFLzh7P9VarEAAABcdKWPpn8XnJGgAH954yAdrfk20CdeDgp0VO83Fm5ZAAAAkeVNZdexr6ebmchIUID/MMgMABZU732fuqYAAADxne27Zff1rncSdTPTGQkK8CyvDOrZk82ovkSL7CUvkQUaq3HPWeSODQAAMJNbV67BbG1Xyl/6m6cYCQqspd5DQmxzwLOZ4lxxQBFlbyaGfgIAAIzua7euSBde64sAACAASURBVKcvo/Oov5nBSFBgLVWDEyMayfb1zFzq1PJmUKAqQz8BAAA49joqtEa/L7EIpsuZTQgKQAvmOD1gzwC0If4EAAAgXYMen05lVabDBYDoFmwMJW6y/BhItG1b8TuGmYgAAAAgMiNBAejPvKYA1FMw/vS0AgAAgFEIQQGgJ28D/cSbQYErzHwLAAAAixOCAhSjNkpxTiqADGUTULdiAAAAGJEQFKAMFdKvEgf2LcUOOeacAU6RfQIAAAB3QlCA/1Dx7MWkpmRz8gDe+gkAAAA8EYICA7hXNmvXJdU9IRpvBgUOGPoJAAAAfCIEBUoqm0O8VjZv/6JGOS6zm57iVAf4RPwJAAAAHBOCAgU8FiKvj9r8WtYUhTIHeXAi2TnwqPgNQYsCAAAApvRP7xUAhle2Fpm+NKEIc1OUP8s9AVZQ9t2fN6UWCAAAAIQiBAXybdvWKwHN+3uCW+qALrWx1yWmFPYqTKxsq0P2CQAAANMTggKZiocNeQuUeUzGAQXgVamng9GfAAAAsA7vBAVOqxFTib7W4f2OKRToXyWeOdu22XswkyKPDLcFAAAAWJAQFDgnYHwl82A4Aa8jgGjEnwAAAMAVpsMFTqiU3AiE4JGS/SfeDAqLKPX6T7dTAAAAWJmRoECqLgnoY/ny4C8NBh2LGXEBeEv2CQAAAJQiBAW+65VXPRUxJWfMwWkM8Er8CQAAAJRlOlzgi6qBzcHC39YxD4qbgiVYgRlxYT5FJr/d910CCgAAADwyEhT4KGaKYDzo9Baf3HjlbQdWY/QnAAAAUI+RoMB7DYLGs8NAmYlD/JbdksJgUJjDxYt0/1VqfQAAAIDJGAkKAO1I5oCVlboHyj4BAACAr4wEBXJUHX6hsomkkGPuEjCiUpPfugMAAAAAKYSgwHsHFcbuxcfuK0ARCx5H4W5jdjgEsW2b138CAAAAjZkOF/houFLjtm3DrTPcOXtP2fc9JVNxW4DursefrmIAAAAggxAUiEWhEwAmYOgnAAAA0JfpcIE+TFMJjxT6MyTuNHcbaK/I6E83RgAAAOAKI0EB/noq2h6XX18rvMq1Bc03i6korgaT4kI0Jr8FAABgdAd92+6dVmWuU4SgwFoSI5Ob+1+mBy1P3/X4nzycXh3vWDsNYCDiTwAAAEb3tW/bsWJ5XzdV03RCUGAteSXaIp96/L+eUqsxDLQ7rUNu3Ipr8PpPAAAAJpDYvb39WeNurOpiHu8EBaroUsocqH7qoXU30FGrx064wt4j3cFvU8h2cTfuv0qtDwAAAGQ4271tWVV4/S41jURCUKAKd2EgGvclXjkrsm2/rixE9gkAAEAELacPjPktszIdLgDUddxSkQFcd+pdvyzLSVKKyW8BAACYSeSKQeR1G4KRoEAVipsU4TEPEMf1oZ83GgkAAAAEcbGfW7V6qTR6nRAUgNA87EmRmKk4nSBPkfjT6z8BAACYj3JTZKbDBaCzuecynXjTBrVtmwxmQa7EbIZ+AgAAMKv0l1g1LiyoY5RiJCgAMAMpC5RVcPRnkfUBAACAZp46s9H6ttHWJywjQYE+rgz+q/pDmFPPj+w18ZSCjgwGhWNGfwIAADC9g87v2S5twVqTMaBlCUEB/jr7rEr/+/vTS1F4KV9bLc6HsuaeWpkaXIOvioz+LLImAAAAEMdx3anxb+79xD+R6XCBWL7WXgdNOPZfvVckqOM9M+hBp4vEq8xJBa9KzX9bZGUAAADgQL3u58GSa/d5FayKMxIUAPoQFQBxXOxouaEBAAAwkE+94I7dWwloDUJQIF+l+3LeWH7lV6LRcIEgXIwHvP4TAACAEensk8J0uEA3GTVTz7ZlOfSkMyMuiUR3RSa/tRsBAABYR6VesDpVJUJQIFPV+/Lb15IdfKMKLPBIDkqKpxOgyBsxh7D9urgcD18AAAC4LqOHrkueyHS4QE/7vh/c4h/nxV2kML2y45NhPloqEMHtQfN487n/71kvUvPfAgAAQG2PvW+d6I6EoECOZmFVyhd5ihDQUoEuDO3T1Xr798keMRJQAAAAqOrtBIcHXWlVxKqEoMBpX+/LLcujSrGMyHnbQOLY4uNmKBO42JeY5gy5uB/m2AkAAABE02VCpnq548Evrd9uoAS0NiEo0Nlqk6ByYJqTYY6tmMA0ZxRcIf4EAAAgoKfu6gQ1nLObcPz36lpF/NN7BQDyC6wqs0vx1KcSpxbHhj5DJKAAAAAENHRfuwivgWtDCAqMyjOAQTl1W7K3Wda2bRJQAAAAApo1AU3vRyfugYM/m3UfFicEBUI4W2lVmZ2VI0sXGo5M5nr86W4MAAAAZ83xZtOZCEGB045v5Vfmtk38rMrssjzayeCOwbHJzpCLA0DFnwAAAHDF22714z9eHwb6+Dfqpcf+9F4BYEi3u/brHfZ65fTTkkstH2r7+krzZmvCKdu2OToLuh3040fPKEx+CwAAABE07mIrah0QggL56t1b3bUBuG6RHyVcj2+n2RUAAAAQWaVfYMtBPzEdLrCQ0Uf5EJ9zLKbEVqDDt5Rp+gZe/wkAAADwlpGgwEL2fT8uFi8yZii448M09M+axl3zCXy9/FnKHBej+W8BAAAYUfcqTfcVoBkhKEAqEWkQg+agI67zggY9u3hr4v6M+BMAAIChvcaQT33Vx/96+08Td/OpRwgKUIbsBILzKz8m4PWfAAAAzOG4f/r6Xw9S0pZiFpd09j8RggIUIwddXMw2EI/koAxNAgoAAABDe+yY37r593/J6/Xr6R8TggIA/OXXDGs66GlEOB/EnwAAAFDQpx/KZ9eFMj719JHXJXytBujsf/VP7xUAgGee39STcnYZLUoc27ZdfwOomyoAAACT6dLV/dRDr7QyB4vV2U8kBAWAAo5TCo0SaCz4yM4U4k8AAAD4pN5P2D8tOdSP5kOtTGRCUACoSwgRjcGgxHflDNx/FVwfAAAAIBTFqxRCUADG4xlPA04zfoLNrpNC9gkAAAAXPU3OdH2uJnr503sFAOah9LwszaDh7PvuqK0p+I1a/AkAAABtfK0OJXbS9ccjE4ICPHv73Pr6zPO0KyulFWKfA9O4/vrPUmsCAAAAixj6V/JKASmEoAB/HTw5PFRgMinNXFk7bUhAAQAAYERVu+QH5QKlgETeCQoAlxynF1okoxv394CM4uIUuG4yAAAAkG3QbrWCVSIhKABBDdoEeTTBJszNAaKvbdvyOi37r+KrBAAAAKvJ7l/X7pjr+F8nBAUAgDfqdTay488fXSAAAAAoLaOv3bd7rjiQSAgKAKwrpcloghHKuhJ/6uQAAABADad63LrnoxCCAhDXcXsiQjQVYR1owIGeQ/f+jAGgAAAAEFbij49b9tBVAy7603sFAKLwRIE17fsu41xB35v8lXPM4wkAAACauXfDn/ryvbrnr5UrhYJ0QlCAf23b5vlBQU4n6Ohitl32+jX6EwAAAIYTp1d+WxPl6wxCUABCO04y+j77D1ZMi2QsKYGZhuZwuk9++2MAKAAAAFCIQkEGISgAQBI5KOnEnwAAAAB9/dN7BQAA+hM7UdCV+W+digAAAABFCEEBiC5mJHBlmBfjctz5yhtAAQAAACIQggIA/PyIoCghLwE1ABQAAACgOCEoAGMLODJPmDG3gKccEWzblp2AFl8ZAAAAAISgwEJEF+MSEtCGM40MV+JPpxwAAABAJUJQAIbXPt4++EaRxuhSjqBfVHDnDaAAAAAAMQlBAQBOk4OSPQD0RwIKAAAAUJ8QFADOkX5NT0DFsSvx548TDAAAAKAJISgAYxgiNhhiJSlFHL6mi/GnuwQAAABcp39NCiEowF8ijXE5dpSlJc2ri/PfOqkAAAAAWvrTewUAYnkscCtYc4oTZkHbtjnuizD/LQAAAMBYhKAAH50teStz99UmjjLkdB37vjvc/Fy+6j0aAAAAALowHS5AMfKS2mQJBOTCn5s3gAIAAAAMSggKAPBeYoIlB52SN4ACAAAADE0IClCSLGRuju+CRFlr8gZQAAAAgNEJQQEYSdh0IeyKAWdJQAEAAAAmIAQFYB5GalJDSqzl3JuGKXABAAAA5iAEBShJBXxiB9GI486PHHQKeQdR/AkAAAAQkBAUWIV8AsiWGHG5zwwt4/CJPwEAAADCEoICq2hQp1YKb6PLfhZuIQed2LZtZw+c+BMAAAAguD+9VwAgHHXtoW3b5ggC6fIGgNZYEwAAAAAKEoIC/KWuPYp93423Ay7KfgNo8TUBAAAAoDjT4QIAJDEj7ky8ARQAAABgbkJQAGZTPII6XqBQZCkO9wS8ARQAAABgBabDBQAozLtpw/IGUAAAAJjAfBNxvW6RisR1QlAAJtQsgtIWWZBX0g7KG0ABAABgGrXrM58WXrxQcLAVj/9JgSKP6XABGFKzB7+4i1cpp58zJxRvAAUAAICOxqqTJAaTVb+o6veuQwgKAHCaHHQUGW8A/fH7SgAAAChqlI52Shkhr9Twdjln/16t6SwhKABADjlofAaAAgAAAIlOlREu1nyUjNoQggLAR8fNEUkJKTRquzAAFAAAAKiqS81HoekUISgAoxJX0J2TMCYDQAEAAIBT8sJFOWhwQlAA5qQ1AGs6e+2LPwEAAGBxVwqJipCRCUEBGFjH6EJqwo03g4aSkYBWWhMAAACAT1Qk2hCCAjAtyRNxOBtry3gJqP4GAAAAcL1ok7eEK3UJhaZEf3qvAAAEpTFBon3fnS195b0EtMaaAAAAAA00KMW8lg4OvnTbtoxSw/FHjrcx7xtXYyQoAEALgtIa8gaA6iQAAADA0Ep17U9VFRrXE5QvrhOCAjC2Kz+YqvSlLCjxlJCDliX+BAAAAGpQQJiDEBSAyeXFTsIqiMwbQAEAAICLvF5nekJQYCEeURThROItg0Gb0UUBAAAA4Ks/vVcAIJDHwvq+72/r7CrpAX06WNBY4qnoxfVXSEABAACA67LLiZ/qPwo+AQlBgYWcerB9+uODhXjITUOkSjaRfFWmwAUAAAAWcVwGUfRIYTpcgGIy3lFHG44L0Tgnzzp7g933XWcAAAAAZlW1tBKhpCABLcJIUIDCzHsAizMYtDgDQAEAAIA2SlUVnt68lvdBLjISFIAZfG1JaD0QjXMyRcYIewkoAAAATCzybHy3FXtdw/QVTvlLpY90RoICwH+Ya4LrEgeDGjhelp0JAAAAAwmbZdaQUgWSgBZnJCgAQHmJTdKlmvunZLwEtN7KAAAAAAVFHs150azbNSghKEBhCvG9NNjzDi60YQpcAAAAmJWY8Ap77xQhKEBJCvGRaSLQmMGgGTIGgLrxAgAAAEF8KlMULF8oJaUTggIUoxDfnUNANHLQUwwABQAAADpSapjMn94rABDO66Pu9bXVKS+yJqCvB04WBb1IQAEAAICh3YoV+74/VjnSKxhPHzygOp1ICArwV/pkBZ4xQKLE9uvijdezU+DWWxMAAACAi7JrF+k5KClMhwvAVKQjMJaMl4DWWxkAAABgZRECyH3fU6ofEVY1PiEowL8U1jnmDCGbN4O+dTb+/HEZAgAAwPj07lPYS0UIQQGYTfZbP1eLoKCjjMtN6x8AAADmoI+fwl66zjtBAVjO4i9fpAtvBn1kACgAAAAs7tbZT6+ErDl6wStCLxKCAsB3Mhiuk4PeSEABAACAm/Re/9NfBowGVTACMh0uABPKaHMEbDkxH61hCSgAAABw3fWKwaclfK1dqCIORAgKwIo0VuglpY0+5fm5bZsEFAAAAIBmhKAAzEl8wtAmy0Ez4k+XMAAAABDNZBWb6QlBAVhUepNFGENZS51RBoACAAAAMWXPiMsohKAATEuUQliLTIprACgAAAAworc1jYNCR0ZBY/t1djVI96f3CgBAf2VbMFDKtm3jnoEGgAIAAADjulU2bvWK4ypHXgL69n+nU0hJYSQoAOvKmKgTSpm7qSoBBQAAAOL7WpGoUT+8vkCFlERCUABmtsikowxqyvPTS0ABAACAdShrRCYEBQDoZrIc1EtAAQAAgLFcKU0oawQnBAVgctoiBDdHDnp2AKj4EwAAAAgir0bRq7KhopJOCAoAwCXmvwUAAACGdrZYIQEdghAUgPllNw60Kmhj6MGgElAAAABgAukli4vFDbXKZoSgAPCeVgXRBMxBTYELAAAATONr7aJUcSNjIYoqGYSgAP8KmC4A60hsyIa6U51NQOutCQAAAEApn5LOssWN9DzVz8qz/em9AgDQwr7vodIjeJV4lm7bFqHhKwEFAAAAJtammvH4LUFqPjMRggL8dSUk83wCrhsiBxV/AgAAABSnilKc6XCBhVR9ihhlCKxAAgoAAADAEISgAMXIQYOTxzCEyC8HlYACAAAAMArT4QLAG/IbOrqdfqF+VyH+BAAAAGAsRoICCwmVKBCZCIcIvp6Hze5pElAAAAAAhiMEBWAh+75LaJhJgxw0/StcXwAAAADEIQQFAAgqJVOsl4Nu23YqAa20GgAAAACQQQgKABBXrxzUAFAAAAAAhiYEBShGDAD0UjYH9QZlAAAAAEb3p/cKAMxA/AnUs+97Siq5bdv1e9Gp+NOtDwAAAICwhKAAfynoc1MkTIKC2uSgElAAAAAApmE6XIB/KejzyHSgRJN4j8o+dSWgAAAAAMxECAoAMJWMHFQCCgAAAMBkTIcLALC09ARU/AkAAADAKISgQGd5MzcqxNOAN4MSTeKbQX9+b61fT2ADQAEAAACYlelwgZ7avLsOsjnTiKZLErnvuwQUAAAAgLEIQYFuLsZL0ilgTel55MF9cts2d1EAAAAAJiYEBfooUnxXwQfWlD408+198tRLQI0BBQAAAGBEQlCgg1LhpdI8GWTnrObpnD+VgFZYHQAAAABoQQgKAEeEpoR1djzoqSlwJaAAAAAADE0ICoxKgZ5m5KBM4NRp7AYLAAAAwOj+9F4BgI/uVfin2n12dX7fd2nW4pwAzKfsnU38CQAAAMAchKBARE9V+FJFeQEYMKVSOagEFAAAAIBpmA4XAL6ToBPc9fxSAgoAAADATISgAPDzk5AAyUEJ7kqKKQEFAAAAYDJCUIB/ibimd3CIbwmQHAgAAAAAYA7eCQoAsDTxPwAAAMCjT6MpalRRvo7cIJuRoAD/8kTh59tpYLgw83HrAwAAALjbtu2gBnj8X8t+V/GvW5AQFIjInZ2WToVATk4AAAAAmE964ni9Qngq3RSFZhOCAkG5rQOk0xoGAAAAyHa2rnKlDpP3WZWfDEJQIK7tV7Ova/NFdJF+fL8ODHWqEMrF+6T0FAAAAFhcy1SyfXq6MiEo0MHZV9Cp0dOYHBQAAAAAONa+SKgseYoQFBhGgyhU2rqgs5E8hFLqluXWBwAAAKypZVWkyHcp46T703sFAM7Ztq12avX4FHn8rsR/P3gIyduAgso2eRvcXQEAAABCuV5dUVGJTAgKjKflc+XTU/Dsvz/+Vw/F9jJaM8d59o/2DV1V+sWfsxoAAADg5qlI0mD85f0bjfUsxXS4QB8X6+weAxRxfB56MygxnTrx9l81Fg4AAAAwpddaSqUfju8Pnv6xxtetRggKdLNsDjrumgN9nX1v8VPrOf1bzq0WAAAAwIDO1kA+VVfSl/O0BElnbabDBXo6uMurwhPB10lxIay3v1hMPJ/NiwsAAAAsK6Mqkl5LudVnUv74oJKjdJNICAoEdbuJeykj10kxmUCpXybKQUt53Y33fWu/AQAAQHwda4ZKB82YDhcIzezndHd8BkpYaSDjJaDHf1Djexex/Xr7nx7/pu16AQAAAC00LlarjV8kBAVozaNrMtIOqsp+Cej1P+Nme3DqU/VWCQAAAKhE2WQmQlBgAB48ZCuSQzgDGcKpEzVxnL0kzx4AAAAAGJR3gjI8799aXI231j0u8F7+PviWGuO0aMCxIL7020u983nl56wEFAAAAKaky78IIShje3z/1s+qJdpF7Pve4Mn0egqlnFROvBUcn4E1wnhIvOldOffSb60LnuS6QwAAABBW/G57kcwi/mYGJwQFYEXF45wFIyLqaTkAVA76lj4GAAAA1PbU+04vO9TrthcpfTyuXqXhW+uUaC4SggJj+PRgK3i79+SYT9n2UJvhyNB+Clw5aA12FAAAAHzythAxeuXtIO9UUenln94rAMW4iQB9jd5QI4JeLwE99VvL6U/16xuoTQIAAACfjF5YOO71F9y60XdUBEaCMjZFxkW43RPE1wFzftXFFQ1eAvp1sYaEHuyB+yYf76VZ9wwAAADAWIwEBfpIzzUloMD0RhxeOdwKFyTmBAAAgDxz1xP2fW9QNFCXSCcEBTq4Peq2X1//EjJUOnk0MuioQUvaGf7J056xowAAAIC3XosGGWWET7VNFYlTTIcLtPPpxp0dVrnj08XxpLgTTxNKDQF/6vF12ue725854R/ZGwAAALCmx5rAY3WlYALKWUaCAvzLo2Ud11OKZu8/h5s2s6k8fl2z7wrFrywBAACAIvZfZz+otFiQEBRopPi9W0maPM4cggj+HtD0KyX4hgAAAABxKM1dYe+dJQQFgBwGg9JG4zGgT1+d/sdzn/OvWzf39gIAAEA9ebWOsuWRsGmigkNZ3gkKNJL+krnEpZVaFFOK0FzwclAOJJ6i3U+hU7fuCc75g+193LoIdxgAAAAY2sUctGPfvNdXj1516cJIUKCdUrdpt3tgaKMkoDenfp5palwAAACggUplk75lDUWV4oSgQFMXH04dp4WEV85GzkrPCIc+u4Zush/s+e1Xy/UBAAAAVnBccBi6UtSREBRobf+V8cEa69Ns+UTQ+CgLS8gT8HZ09r695skf8MABAAAAo1NwyCYEBbpJKanvD9qsFRNomb58PTPXjIJ4tcgY0EfjDprMOwTTHDgAAABY2XE1o1Kt42CxCg5X/Om9AsDq4tzEt22LszIMZN/3QZMemkk/Q4LfhW6rd+qEX+TWWnwbF9lvAAAA0EvZmt6VXrzSYj1CUACmEvBnU8KMxU2TgGYb7hI42/dI37r7kt9+5Ol7h9tvAAAAMLdPFYN6/XeVgYtMhwvw17iTN9KXSXH5ZMoENGOK8okvgYwEFAAAAIjsbRe+/US4XGckKLCQxCkOsh88A2UYQANTJqB3ZyeNGWVcY6VXt34d5anPAwAAAI0dFDceJ3Oq12dPX/Lx5FJ8IgQFKGaUEj81eDMoT+ZOQG9mzUEPVFp/dw8AAACI6WufPbtWkDdc5+lfRq+01GY6XAAo47jNIeRYygoJ6M1q8+Lmrf/Bpw6mYR/93AAAAID4Lva+qyagLZczKyEoQEmeOn0d7P8IcYLTYxHrJKA3GTmoa+Em+C0LAAAAVtC+D162MKLMckAIClCSsvXinACsloDeZGzLuA307cHF5Xz6TzOdGwAAAMCjcUsiIxKCAkBJJsVd2ZoJ6M2+76tNjftTZ1TrfOcGAAAABJdR1vjRhR+BEBSASYwSqIyynpy1cgJ6N8HUuH1HtU58bgAAAEBwp3rluvBDEIICML/GjRJtoAVJQO+Wmhr3rsgmTH9uAAAAQHApQ0Lzho3ShRAU4Nn+4OwHK60Sk5kg8uGRBPTJ0DlonDUBAAAAujiobFyv7RSvDi1Sbsrzp/cKAATy+sDwCCHPvu/HUcq2bc6uOSRmZqsd7tv2ngoUI1wUHRPQ7tsOAAAA3FXtpysCNGMkKLAQ43uAsiSgZfV9RejFr/aIAQAAAAjFSFCAf0kphnYQP/Q6sgaDTk8C+lXGeNCfTpfGqXuIvBMAAAAgPiNBAaCWr0GOKGVcEtB0ea8IbXl1RPgVhbsBAAAAQFlCUACGN3R4MPTKL8tRO2vf97wotMbKpPu0zpWS0e7bCwAAADATISgAM+s+Dq/7ClBcelLl6D8ZMQd9q95axdxeAAAAgBEJQQGgLpPiTiN9jta8gY8ryNgzq10gq20vAAAAQCV/eq8AAMAADAAtaN/3U1Hf7Y/b79iqeeTBTui1vQAAAAAzMRIUYB7pw9RozGDQ0UlAi5tmaty7jC06HhcbfHsBAAAAghOCAszDDJxPQu0NOei4JKCV5OWgNa6UvgdODgoAAABQgxAUgLHNFBLMtC2QIu+nGwFz0Hofd1sAAAAAyCMEBYBABB7RGAbaQJAhodlHMG8i3FLfDgAAAMBbQlAAaETIMTEH96IgQ0IzVqPgof+0KL+NAAAAAMggBAWAdlLyEoFHEOljDSWgHVUaEvo1DU35m8c/Tv/qxL8EAAAA4Nif3isAAPkOwo+wWcK+718zm23bwq4/Txypgm47MyPUvH2k+LEoO8rzvl1f41W/hAAAAAC4zkhQAGhNbBacMaB9Ze/VGqNCC0ofPOq8AgAAALjOSFAAiMhg0F7SUzQHqJ4royHnuHYm2AQAAACAvowEBWBC8fMDLweNSQIax5U97NoBAAAAQAgKwKhWyDlW2MY4JKDRJE4e+1bwqXEBAAAAqE0ICvCvpcrlS21sWInpjoPVhgQ0rItDQl1BAAAAAGsSggIwpINgY6CMSg4ahAQ0uCtDQn9EoQAAADAdPX1S/Om9AgCBXH92CkioZNs2Z1clEtBR7Pt+5S59+6yDCAAAALAII0EBShrlJ0higDgci74koGPZf2UvYZS7NAAAAAAXCUEBChuiwj7ESq7DpLi9SEDHZXZcAAAAAI4JQQGgPzloY6diMAloTBdHhbqaAAAAAOYmBAVY0eihzpTphRy0mVP7cPSLZQXZUej2q/gqAQAAAFWp2JBCCApQnpJ6R0M3gOSgDUhAZ2WCXAAAAGAy24Pe6zKkP71XAGBCghNqu7V7nGlnSUDntu/7lS6BywoAAAD4+VZBalM6kHoWYSQoAIOZuwUggKlHArqCK28JvZn7DgMAAAAcSBlz2aB0oDpRihAUgHnMEVylb4WpMBKd3VFznEgrk4MCAAAAp5wqH9UrHSj3lSUEBSjp+iAk+BHCFXW24Wjnz+Hi3Vh/ao2KJQAAG7VJREFUAwAAANaRUQeoUTpQjijOO0EB/hJ+EEf62w29yPCABHRxtwOa14VwZQEAAMAKsqPHbdsK1g0koDUYCQrwL5XuISzVGnBOXiQB5Wb/lfFZs9AAAADAxIL0+oOsxnyEoABMYsoEy/tBs0lAeZV9lLcHZVcJAAAAGFeRWoFqQz2mwwWA0NLnxeVOAson92PtsgIAAAAOtKkhKFBUJQQFgOi8H/QUCSgpsl8X+vQR5w8AAAAMKrEs8LWGkPdyUPFnA6bDBWAYBy0DOcSjZZtQGTOQOHMWl/2u0LtlLzcAAACY2Gu5oGwRST2hDSEoAAzgbDNrwYZUxiZLQLm5GIV6XSgAAAAMJ2O4xUH14FRZQA2hGSEoAIzhbE6zVHNKAsp1RoUCAAAAtUtGqgctCUEBYCRy0Cd5I/AkoHxyPQc1KhQAAAAgAiEoAGMQKtzJQa+4PtqP6RU5SUShAAAAMJyvBQFlpbEIQQFgPGdz0CnDmIzt0k4l3f7rykJmvfoAAABgaB1768pTLQlBARjAcbtE0yHFZEmMKXBpxrtCAQAAgKqK/BSbV396rwAAkGPf97PJyu3vJ2hOSUBp73YKZceZjx90NgIAAEBfGYW1U47rAI9FBlWCqoSgADCqi6nMiMSf9FXkotPJAQAAgPls2/a2bnD/9ycqAw0IQQEYm+bC2V+u3f94rF2XFzuNtY2MQhQKAAAAfRXplRf3abGfclBq805QAKJbaqRjnrxW1LZto+xbCSgBFXlXx0CXIQAAAPCj4jQUI0EBYAbZbzIIPhwtOx8Ku0VMpuCo0KdlAgAAwNz8LJjajAQFgElcGZcWsNGZPUKuyPg8OKXsWRfwegQAAICydH5pwEhQgH+ZmT2m4/aQQ1ZQnCGhVxrBEdafZRUZFXoz6Lt7AQAAIMWUCei9C/+6dXr3vRgJCgBTuTgirW8b9OL7ETUoiWD/VWRpU3YLAQAAYGKPNQEzlvVlJCjAX3mDDg0hJaDsV4T+/PdCaHNuF4l5XIZEc+UyfNT+kgQAAACu0H8PQggKkOqglq1CXYm5cK8oMjNn7TlyxZ/M7WAmnDymyQUAAIDrSo0fIDghKEBhBoYSSsEo9GmZRRZ1ncuNIRR8XeiNH98AAAAAHBOCAhCUH1UVVDaAOZWJVj2Osh/GUjwKvfHjGwAAAIBXQlAAWEWpNxQ+6RJXi3wYV/E5cl8X5QIBAAAgskpFqkd+McyPEBSAQWnE5Kk0EK0lh55p1EhD7wt0pQAAABDZvUh10DtukJWeFW19OCYEBYDlDBqFCnWYVY1L0thQAAAA4nvsrr7tur7+Y9WKll8VT0YICkBEx60ZbZEi6o1CK84RZwVVL8n7Ml1NAAAADC3xl8T6v/wIQQGAyANDNVhZ0ONpX2Om3NdvAQAAgLHUmyk3bzCoXnZMQlCAwjzwGFSoKNR1BDdV3xv641oDAAAA5iUEBfhLLTiIIDncmiJEoa5EeFUpDX27NNcgAAAAK3v7u+GD/rh+dFhCUADgWdXZOL9+I3CgwS8VDBIFAABgel8n1H2cF9eYjUEJQQEYjLp8Y7Vbew4oZGgWhT59IwAAAEwjJQdttjLUIAQFIBZti7BeI5D0gyU+gRpa/iJVJgoAAACvdJAjE4ICMBKtilAcDgii/RTWj9/iVgAAAMCgvg4G/frxgitDcf/0XgGAKDyxIjAMFOCi/Vezb9y2zd0bAACAQSkLT8xIUAAAmFDj4aEHX6E/CQAAQGR540H1duMTggIQxdemhoYFQJ6Wbw99Ze5cAAAAgjubg1bq3l6cnpcnpsMFAIBVNJ4p99X2oONqAAAAwJP0/nLVnvXbhftJcR4jQQEYgyc9QCl9B4be3b7d7R0AAIAgbl3U7i980VMuRQgKQAiGBAG01/i9oW+9/V79PQAAAA5U7cPqk07DdLgADEDLA6C2/VfvFfn5+Z01t/daAAAAMCqdSn6MBAUgAo0SgDiectCOt+jjrw6S1wIAABCQPiM/RoIC0N3X8romC0BHcYaHPjFaFAAAADhgJCgAAPDFPQeNljs+rU/MvBYAAICy9n2P1j8lICEowHjuD/gJSr2GgQKM5eC2HKH/eVsHzw4AAABACAowjNfi8rZtQ9d5I5TLASglzmjRTysw9EMTAAAAOEUICjC20XPQYxNvGsDEXu/e3WPRm5mmUgAAAACOCUEB/hU8TQxSPi5ovi0C4JM4g0RvDBUFAACA6QlBAeggpQiuEg0wn0/39lDhqAcQAAAATEAICvBX8MGgbw23wolm3S7+f3v3kvW8ih0A9HOtmkG6aWb+I0oz3YzBaXiV45IthBCCA+zduvf/bBm9Do8jEEPYpKPcjzQQaqqoeaL3sSIxAAAAzUiCAvybvaH/z39vP2wXYUS4osl2BybzfYeO+IAI4/p5sQWpOMwTvejzPDqYAADARc/nM0hvkbAkQQFSftaj6crVcF6ahXAhMp0HYhpinuif+itpr03loAEAAGUi9BAJThIUgFgMhkJAEhUEMcQrRV/cMp+CnCAAAACWIgkKUJlUQYIxUIjMHcq4NjVvhIv5Zxm0EAAAAKAZSVAAGrEQLgBtfNYmERKib1bUB7iVGfkAAHySBAUiMnliPplj0ObRAlBX2IToN28bBSj2HUL1LAAAkAQFwtkbAdSJHdepQefXh51raCx4cgiqCLhqbqbvoqooAd50IQFgTc/nc6BuHV1IggJR5NRY0mMjKmuLzHeuFxm/fu/mlHv3Z4016G0TSy/ehgNNEv1mZV2AHPKgADCx4fpxtCcJCoRwdqZg5H5s5LK1d7EtEvxc5/t5HKbZu5fNPk6Wxt47g38T7eNSps/Wz+rWpQ6/tzN0d1qAAtYxdLgGAOBWkqBAZ8XTBGOO68UsVRcGI3KEvZLPcroZwgpvC5t40nn7ODNBWnTi6wEAAFjWcF0zOpIEBfg3pwYHTbPYU7EtMkGKYvqWWWIHJzh9fwucwUWscB4nnnQeJM7s/dBAV1eiqBNcJwAQnPVIAC4aqPNFEJKgQDcBF0o9u0H9lo2Cc+oF5oxujgzT9IKk0G4llnY09LtF366X/OetdLjZae7BN2+PBuDbz7eH/KkpAM4Yt7dFR5KgQB9VKq35Rs2GVpYB/ZMHBWAiZYnAOSyym2lzvyH7b/ZRewls4CYrPJAHA5m7PTMx3Q3KSIICHai0ZlJ8NrU1F6FXD925DbvbHH8NoY1pxqH2zuwc9+A6+d3P/514B2faNSYzTaWQb45q4m2y3VnWrOdx+ur+5btROt8+drFgDTWHf/QuALCcnIG/55crW+MOj38p+G76nAJwltpwLPntnNU8jvQuYErw4l2UyO82LslNptmRPd87OP0uT2mgkFhms18T7+mUPs/X3Odu1v1625zH3sWpafr2zMvP3ZlsH9tTQw3NTFCgqeLqwYqpLTnUsCBhFjpyA2Y6e5QkmMmRuK7mmAeTGPOdYO8WsTeiPdMZVA8OLZ1bmv5Cnelm/PnQzDR7twKxtK7D4zlflJuSmaBAOGdrjvwKXp20p9kzxea7AO3pBwq801CNnhVn1pRARC/pa8+VOYR0nr5lSe4zzY4wt+kv1EUmSi5rgvNY0BW6stf5353g2M7NTFAglkR9dn2SxJR10uaZo7D7aNAW6MUcO49vz+F9Ej/P5uLX9ll1D9c6sWWR3QSgTM5MKW1RYCxnG8ACXWSSoEA7BlDuE/bYagEANLBOMubbIhXN3m4e7v6yF0YDBSMjf8kH1xa5mAFgPhPkPw5XDhh9ByFfWR/KbRKWJCgAd1H3L2Ll7AtAcHt1sbjdyx3LWn6f5ZxNZbbTzO+ZfgcBAGbVeAVdYpIEBRpRhSzFUNEnOcK5udqBEf2MXWqrQRU/q96rAK/L7/0tNSksTu0DERi4gOs8PBeTJCgQyGE9oU0WnJoeAMaVrse1wahlcy3dd2lZLxoAgHwah1OSBAUauTV/6UGbjhx5AFjBqRrf8AER1LoO9TXoy6PAAFDmVCsuXdt+bif9hgvtxmgkQQE4R11+ljELhuBCnZi4TXvvq05sYQ5XruT06tNCNIcEUgCuW7PJUWuvN9vZvNyB4CRBgXbST7CuWRmH5XQAMARP2gZ3OIGp4NFsgw6MJX2t5lzJxVEuZ+OiKN2Z6goRuA1ZXMUha42raCRBgXa0qMJSN0MxrVvoyw0YX63R7Z/PX79oZDK3u6/ww+2LtNxKDF+BThN0N/Rt2LGmSBw0D/GMQhIUYB7jtmYAgD3q90PeVwq3+rxrErdbeo3f118P79a9O3Tz3MOpGeGGfYHrDm/GoUMNc+hbZWRW9InvdtS9ANxKEhRoZIjq5LPCzm+/XqnmK+peAGBonmEcmnMH+YpzMMBf9hK7V76e88Wz25n4vv7ujeYkkgs2y0/fR3tz0PJT9d/fTW8k8frtn08JFJzN9KhIwW047hV16jy+fO/sHYHouxN39k0E+aWKdgbzw9TFmquKxA3bUoNfn6zCDXXNU0wSFGDrXWGfqrlrve9qQafa3H8OJgCLiTbkNL1BH2AHVnbTEP+ppZIP04HFpbrYDWwcn6/8XK0hiJ9/KitY3aO3VF3ZZme/fyVnxmrFn+vu8LGPIGUOUowF3d2T8jT5ECRBAVoornTPJgj7uuntXD+f+x5lONiaOdBdhPAIaR6lWkFigVCAQaWDmPwZ0IuIQV/G+kKRBAVoZIX6r2Ur86bfqnWOVjjdbxK9wK0MYTCE9GPge/VglfrxMImeniThFgMAgA0DWdOQBAWA/3ffBNY2PxrW3gtp3v8etnGZuUJX2PLnGyiZffh2orOz0uPs2k3m3sG59+5lhX3kisPLI/2Biu97AwAACEUSFKCds4OYBp6YVcGbS4K7WP7u6Y3M8ieC2M8/3feCluprr/18i1X+dvqewdFvHyCsnKmi3auwPWIjAAAgCQrQTthBIqCvgQZqE0WdbPbzqULG36PGJbzpFdF7zqbno5l+vnL8G6SKRXZzIPm3TM65axzWAACAKiRBgSiujO6NOywIAPNpnyGokp4P7rUjmznKiezv3gfe27mllPslYUorNMK/9/H6XrsvAAAaWKGxyiFJUKCRU+sK7lltvKDKQQMAprFpGOS8zffUv7cXpyR7NkMnZQUedy7v4fLjg+7XW5dXYr8b+Zlbjn+bAABATJKgAKHJgwIAdFSrJTZEi64g49t4bnFdHU/KqSNWfHjjXHUBOzWfbyj/eYTT+e/Pv77/O3MfAx4NwkpfLZ8X4dnvLuvU3QqRpSNAg1/P/92zLZmKe5TzNJuAMD1JUCCQw37mxe337QNcX+xXrQwAwH2KW5tzN1Pn3rtmEn2xZv2dnz2yvW5auvv2+df3f+f3+OpOAi7b2mEa+FQZlpVz8C+ex5yfuPLd64ovkrNDNFdixeZQyBAzgb7X8Klfd7vRlyQo0E6EVubPMuR3Gvs+5H7q17sfagAAgPwcYc7szOvFGEjOlLXrmdf8dG8tP99y3bgMLdU9j+M69RRCwaZeEq9Fv/LTF6/VxAvdpx+6iTASCCxOEhQYQ84KMJmuz8gcwk2l1XgFAADyFb9JN0Ixrjj78tdvdZekLpsJep+WZ6TWPhZvJ/Md3u1PROZCkTm5vZzfOlGyy7qMXeTfs+tYbX8ZkVT99CRBgVh+Nq9VRXGMlQkudrhUV+IrXjECAAC8ewQNugYFP/H5lbolrD7R7TtBeCoZ+fp6Yire58d+fmDvWNVd1vjUJyuStwNgbpKgQFM5D9ds+jMWjaG9guvq+xUj9YpTwfcwwd6T4Hufz/yVU5+XMAYAgMnc1LzfbPbKr2TOy7y+HQDWFG1UcHGSoEBrmXnQzE8COb6bX3e8+6flt6il19JbmzJEuwzqPn/zOVP8+/mD4prOYwQAAABwh8wFw9sUhivCDTkBK6hYQwhiALCUn62ITTo5Z/Xyzdf3/nT4WwAArOZ///O/Xv/xH//z331LAiRcXLe8OAlqvDoUSVCgg1pDhyIYADCZ7nOjDyeIf5ZQPhgAAIhJEpQ/SVCglypDZiIYAAB/ybblXosxZ+FrWV4AABjUxSRoegtl36I97wQF+ri+lJzqBACAl4KWYc5XNDhPOZzHLKkMAEADmvG8mQkKdFY2FCJ2AQDAsq7nU73fFwAYy8XWy9lpkZmLwf4s1cWR259v6Mjc97KfLljY1lq4o5AEBfo7W38LXAAAAG+bLtV3jyn/fcOHvbOlFosuW08bYHrpN8QbuOM++Tnass1++/lD1sIdiCQoEEJ+H1LUAgAAIJTrSxxJrMLiCh4x2czAS09ZM54Gafl5zfR96l6LRvgDAlGFAAAAQEA/Fycs28jbXhr4M7WTMx/35+zn9Ne/C/PTYV4q8dN7v773gb0ylx359Py8dErsbMLscDI6QHy1nkYSA6ORBAXC0Xr+lrkmFQAAAAAAp1RJghqhDUgSFCC6W9/7DQAAAACwuIt5UGOzMUmCAsR1tuoV0oEC119hBQAAADC64jyoQZKw/tG7AABUU2vxemAdxXFDwAEAAACQAY1MEhQgqLIEg7QE0IyAAwAAAEyjIJ0pAxqcJCjAbKQlgEzCBQAAAMDb8/nMz2vKgMb3z94FAGBLWgIAGMJno+V6/3+vCWRkAQAAaOn5fB6O0OqnDEESFGA8h9Xw4/FQDQMA96n7zNZhw+bPEAMAANDQuwPy3VvRNxmIJChALOlBwHcV+/oPc0aBjjT6YVkVWyD5m/KMFwAwnE1TR2MGRuTOHZpuJEAgmRnQzG+J8EBaWRpDbIHFJULH2fhQEIWEIACgirvHUio2mQAoZiYowBg0kYHGhB1go+USuIlviU6woOv3/qmYI87AxA6jwfV1+Bv8BACZ/tG7AADcxWK5QDEdcmAjQgb0jpIA8b3u+sfjUfzwxNkvFv8WENmpW7s4CDT4CQDymQkKAADALiN0QBdVgo8IBrwURIOC+ZoFj1x4/BTgVmaCAgwg3SbWYgbqElWAt/yxvPzQcfgS9JcqpQIGtXebt7z9hRqYRpslKIpnqxd8C4BMkqAAAAD8cGpULvPDiY9tcp/yoLAsNzhQ0fWQkrMFS/0DxCQJCgAAwFaE8TgT02FBEYIPAABzkAQFiGKvt2/4D2jM4CNQEAcutlg0eIC/YI0QcQl4S0cnS/0DhPXP3gUAAABgCR75AhLi5AAEJZjez9v8MNN5NjhsPv/638Q7jwUfgOokQQEA2PrsmeuKAx09n884eRHgJl1ucy0cWNbe7V/W6tBQAYjMcrgAIWg0A2E9Hg8xCuhob6RSaALKHK5LCczk834/vP0rBodEqrXWTwBwyExQAACOvZINeuywsouTMuUsgW8iA9DAKL0YK+Le7bvSuX7AcyoypxU6kgQFACCXVCgsYpPvfN/1FqcFAOZWpbUzU4/pfTQyd6piovHniSjbWuJVrMXbTGz2+2MzXRIwFklQAADO0YWDFbxuc/c7cJ+7H6rw0AZwt7I4E+epslPF2Hx400RMbOp6GnXvrzkbzNnHglTo2TOoUQ29eCcoAACnBem0A3czWAPcRFsCoK+Lcfjz6/kTIqt8Jt+VLG+tzQJ9SYICDE/bCwBo445WhzwrrClx798dFnSggLDGClCPf+lYgOK/7n3l8FtjnSNAEhQAYFHP5/PKIKO+HwBQ17tx4vEIoJc2LwRdNspVT1vesamcpX2BUXgnKADA0n52v/OXM1q29w4AXJR4K16z14VqyQA01qAXeVMlIgMKI5IEBQBg690p1c0DPiUyFgAFuucgXzGtezGAEWkU1VVwPAue6P38SnrGZ0HVsPnK5/ZVNNCLJChAdCZaAR1JeACfBARgSiaGAoeWjQ9nu4R3PFAb/+D/LGH8YsMKvBMUIAQNIyAsAQoAWIRHPWBxzYJA/Gjz/Je/jxc253xl738/xd/9U3SZITJJUICxTdZwBAAAqKJsVFoPC6BgXmOQROBhDH98OLWpvc8H2XFgjyQowAD0wwEAANrQ/4I1Je79pRJdiZ3d+1OV45PYiLAMFJMEBYiioMmY/7J3AAAAMhlwB6ii1thU37BsGiiMSxIUAACALAZ6gLFkvsfuJ3lQWErjaaDaVD+lD0vjsOwcwRz+2bsAAGR5NfXeLbDDlp+2GgAAwN9O50iOE3hrHxCEoDKPx6PNeJdRNZiGJChBbfI9wEtmK9m9AwBMwyghcIdXpykdYZqNtgNhCQKNPZ/P4shcPGgm2sPELIdLRO8ay3gHq9HkAqJ5PB6qY+DtjoAgyAAd6YIB1WnbXHQYmfd6qYkvPj8U/CIwLklQwtnUYdoNcJamG3Do8aF3WQAKafMAVQgmsLjit4GKHvfJeaOzziyQQxIUIBZtaOBW34nPx7/7O5MiFbKAfGURw/AW0EAiQIlCMLfiDCgNHKZCm4XoiwvwAh1JghKLmgP+rrWztdGBi9TFAADACq73faoPwhjV+XbqmNx3AJ0aGJQkKEBEmlZAfCIVcNbZh+hNzgAAbpLOgN7a0vDg6VnX5+vf9y4YZxOCkwQFCKqgwW00EAC4lcYGADC96w2essSYhlZCs4OT+WqYzVfuKw9w0T97FwAOqP5Z2fP5zGxIuVOAxoQdWNN9QzyvLb9ji7EkIAhtHphSg5bG4/H4GUA0cjraNDi//7T5l/wqIOe0qlCgC0lQYvlM+agY4O9fN4K14IBQRB6gWPoZL49/AWluf+C6ugvh5j+/zhX5B/nwjHymQp07mJ4kKOHo0sC3TQPObQIUu95FF4IAgF5Ozcs5tdnq2wQ4tdCFftZLlYCc0+0t+KGLedObqjAgzTtBAcbw/NC7LMDYisOIEARUcTGSCERAXTKgsJT7cmOJDZ59x+QK7j4g97UYtUVhLGaCAgAsp2A+qJ4eUFHxrHSxCMiUs5SOnASsJvOuP/xY9QaJFk6xxKG7uAxS9S07y9CFJCgAwIoSo4H6ZkADnsYA7rMJL5sVKb8/sEfYgZnc+tyDN4Mm3HdwborSOZt1xmEUlsMFAOD/GewDEuqGiFNbE52ATHuj0o8PjYsEdFf3xv+5tSuvHblWnEI/f7dZYfZ+KL8AmanKs3t0qgB1SwvcwZP+AAAA5Ko76re3wYrbB0aUiAyHAaFiqkPwgWlUf/qh1jrb3eNMzuLhia+UfetiJC87aHds8/BXup9fQBIUAACAE+4Y3LmS8ADmEyEJKvjATJolQU/91rhx5r2PZ3chwutXigsPjKh/0AEAAACAt+5JUMNlMJm6SdCcEHH4i+IMQAPeCQoAAABAIFdyA9fzCjITwHXpF0aKMwBtmAkKAAAAQDjf86jyR7HKZn0ZJYPpWQoVYCmSoAAAAABE9JnLLHjz3KnPGyIDAJiMJCgAAAAAazEbDABgepKgAAAAAAAAwFT+0bsAAAAAAAAAADVJggIAAAAAAABTkQQFAAAAAAAApiIJCgAAAAAAAExFEhQAAAAAAACYiiQoAAAAAAAAMBVJUAAAAAAAAGAqkqAAAAAAAADAVP4PrW5+vaEfI6sAAAAASUVORK5CYII=]]></Image>
    <CoordSystem>
        <General CursorSize="3" ExtraPrecision="1"/>
        <Coords Type="0" TypeString="Cartesian" Coords="0" ScaleXTheta="0" ScaleXThetaString="Linear" ScaleYRadius="0" ScaleYRadiusString="Linear" UnitsX="0" UnitsXString="Number" UnitsY="0" UnitsYString="Number" UnitsTheta="0" UnitsThetaString="Degrees (DDD.DDDDD)" UnitsRadius="0" UnitsRadiusString="Number" UnitsDate="3" UnitsDateString="YYYY/MM/DD" UnitsTime="2" UnitsTimeString="HH:MM:SS"/>
        <DigitizeCurve CursorInnerRadius="5" CursorLineWidth="2" CursorSize="1" CursorStandardCross="True"/>
        <Export PointsSelectionFunctions="0" PointsSelectionFunctionsString="InterpolateAllCurves" PointsIntervalFunctions="10" PointsIntervalUnitsFunctions="1" PointsSelectionRelations="0" PointsSelectionRelationsString="Interpolate" PointsIntervalUnitsRelations="1" PointsIntervalRelations="10" LayoutFunctions="0" LayoutFunctionsString="AllPerLine" Delimiter="0" OverrideCsvTsv="False" DelimiterString="Commas" ExtrapolateOutsideEndpoints="True" Header="1" HeaderString="Simple" XLabel="x">
            <CurveNamesNotExported/>
        </Export>
        <AxesChecker Mode="1" Seconds="3" LineColor="6"/>
        <GridDisplay Stable="True" DisableX="0" CountX="5" StartX="0" StepX="5" StopX="20" DisableY="0" CountY="8" StartY="-0.1" StepY="0.1" StopY="0.6" Color="0" ColorString="Black"/>
        <GridRemoval Stable="False" DefinedGridLines="False" CloseDistance="10" CoordDisableX="0" CoordDisableXString="Count" CountX="9" StartX="-0.774547" StepX="3.10181" StopX="24.0399" CoordDisableY="0" CoordDisableYString="Count" CountY="8" StartY="0.00258651" StepY="0.117918" StopY="0.828015"/>
        <PointMatch PointSize="48" ColorAccepted="4" ColorAcceptedString="Green" ColorCandidate="7" ColorCandidateString="Yellow" ColorRejected="6" ColorRejectedString="Red"/>
        <Segments PointSeparation="25" MinLength="2" FillCorners="False" LineWidth="4" LineColor="4" LineColorString="Green"/>
        <Curve CurveName="Axes">
            <ColorFilter CurveName="Axes" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
            <CurveStyle CurveName="Axes">
                <LineStyle Width="0" Color="8" ColorString="Transparent" ConnectAs="4" ConnectAsString="ConnectSkipForAxisCurve"/>
                <PointStyle Radius="10" LineWidth="1" Color="6" ColorString="Red" Shape="1" ShapeString="Cross"/>
            </CurveStyle>
            <CurvePoints>
                <Point Identifier="Axes&#9;point&#9;1" Ordinal="1" IsAxisPoint="True" IsXOnly="False" Index="80">
                    <PositionScreen X="488.219" Y="996.913"/>
                    <PositionGraph X="0" Y="0"/>
                </Point>
                <Point Identifier="Axes&#9;point&#9;3" Ordinal="2" IsAxisPoint="True" IsXOnly="False" Index="80">
                    <PositionScreen X="1991.31" Y="1008.88"/>
                    <PositionGraph X="20" Y="0"/>
                </Point>
                <Point Identifier="Axes&#9;point&#9;79" Ordinal="3" IsAxisPoint="True" IsXOnly="False" Index="80">
                    <PositionScreen X="1991.39" Y="570.274"/>
                    <PositionGraph X="20" Y="0.6"/>
                </Point>
            </CurvePoints>
        </Curve>
        <CurvesGraphs>
            <Curve CurveName="Curve1">
                <ColorFilter CurveName="Curve1" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
                <CurveStyle CurveName="Curve1">
                    <LineStyle Width="1" Color="1" ColorString="Blue" ConnectAs="0" ConnectAsString="FunctionSmooth"/>
                    <PointStyle Radius="10" LineWidth="1" Color="1" ColorString="Blue" Shape="1" ShapeString="Cross"/>
                </CurveStyle>
                <CurvePoints>
                    <Point Identifier="Curve1&#9;point&#9;72" Ordinal="0" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="492.888" Y="568.51"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;6" Ordinal="1" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="511" Y="582"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;7" Ordinal="2" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="528" Y="600"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;8" Ordinal="3" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="541" Y="621"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;9" Ordinal="4" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="549" Y="645"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;10" Ordinal="5" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="556" Y="669"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;11" Ordinal="6" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="562" Y="693"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;12" Ordinal="7" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="568" Y="717"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;13" Ordinal="8" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="575" Y="741"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;14" Ordinal="9" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="582" Y="765"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;15" Ordinal="10" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="590" Y="789"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;73" Ordinal="11" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="600.434" Y="813.543"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;16" Ordinal="12" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="608" Y="831"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;17" Ordinal="13" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="619" Y="853"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;18" Ordinal="14" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="631" Y="875"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;19" Ordinal="15" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="645" Y="896"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;20" Ordinal="16" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="661" Y="915"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;21" Ordinal="17" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="680" Y="931"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;22" Ordinal="18" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="702" Y="940"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;74" Ordinal="19" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="714.727" Y="942.123"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;23" Ordinal="20" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="726" Y="940"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;24" Ordinal="21" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="748" Y="930"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;25" Ordinal="22" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="768" Y="914"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;26" Ordinal="23" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="785" Y="897"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;27" Ordinal="24" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="803" Y="880"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;28" Ordinal="25" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="820" Y="863"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;29" Ordinal="26" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="838" Y="847"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;75" Ordinal="27" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="848.233" Y="838.148"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;30" Ordinal="28" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="858" Y="831"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;31" Ordinal="29" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="877" Y="814.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;32" Ordinal="30" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="896" Y="800.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;33" Ordinal="31" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="916" Y="785.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;34" Ordinal="32" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="936" Y="770.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;35" Ordinal="33" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="956" Y="756.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;36" Ordinal="34" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="977" Y="742.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;37" Ordinal="35" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="998" Y="729.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;38" Ordinal="36" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1019" Y="716.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;39" Ordinal="37" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1040" Y="704.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;40" Ordinal="38" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1062" Y="693.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;41" Ordinal="39" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1084" Y="681.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;42" Ordinal="40" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1107" Y="670.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;43" Ordinal="41" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1130" Y="660.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;44" Ordinal="42" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1152" Y="650.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;45" Ordinal="43" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1175" Y="642.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;46" Ordinal="44" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1199" Y="633.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;47" Ordinal="45" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1222" Y="626.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;48" Ordinal="46" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1245" Y="618.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;49" Ordinal="47" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1269" Y="611.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;50" Ordinal="48" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1292" Y="605.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;51" Ordinal="49" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1316" Y="599.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;52" Ordinal="50" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1340" Y="594.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;53" Ordinal="51" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1364" Y="589.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;54" Ordinal="52" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1388" Y="585.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;55" Ordinal="53" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1412" Y="581.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;56" Ordinal="54" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1433.98" Y="575.984"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;57" Ordinal="55" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1448.67" Y="573.545"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;58" Ordinal="56" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1481" Y="570.74"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;59" Ordinal="57" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1505" Y="568.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;60" Ordinal="58" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1530" Y="567.37"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;61" Ordinal="59" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1554" Y="566"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;62" Ordinal="60" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1578" Y="565"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;63" Ordinal="61" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1602" Y="564.222"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;64" Ordinal="62" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1626.6" Y="563.825"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;65" Ordinal="63" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1650" Y="563.603"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;66" Ordinal="64" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1672" Y="562.619"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;67" Ordinal="65" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1695.6" Y="562.825"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;68" Ordinal="66" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1718" Y="562.413"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;69" Ordinal="67" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1742" Y="561.809"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;70" Ordinal="68" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1764" Y="562.635"/>
                    </Point>
                    <Point Identifier="Curve1&#9;point&#9;71" Ordinal="69" IsAxisPoint="False" IsXOnly="False" Index="80">
                        <PositionScreen X="1789" Y="561.65"/>
                    </Point>
                </CurvePoints>
            </Curve>
        </CurvesGraphs>
    </CoordSystem>
</Document>