A model of carbon dioxide flow

- CO₂ dissociation curve: Carbon dioxide is transported in the blood from the tissue to the lungs in three ways
 - dissolved in solution
 - buffered with water as carbonic acid
 - bound to proteins (particularly haemoglobin)
- Partial pressure of CO_2 is 5.3 kPa in arterial blood and 6.1 kPa in mixed venous blood. Arterial blood will contain about 2.5 ml per 100 ml of dissolved CO_2 and venous blood 3 ml per 100 ml.
- Cardiac output: 5 *litre min*⁻¹ carries 150 ml of dissolved CO_2 to the lung, of which 25 ml will be exhaled.
- The carbon dioxide concentration in capillaries is given by

$$C_{CO2} = 462e^{(0.00415P_{CO2})} - 340e^{(-0.0445P_{CO2})}$$
(1)

Inspired air flowing at a rate of V_{air}^{in} carries carbon dioxide with a known colume fraction of $F_{CO_2}^{in}$ (0.005) giving a CO_2 flux of $V_{air}^{in}F_{CO_2}^{in}$. Expired airflow V_{air}^{Ex} is assumed to be the same as inspired airflow and carries a volume fraction of $\frac{P_{CO_2}^l}{P_B}$ and hence CO_2 flux of $V_{air}^{Ex} \frac{P_{CO_2}^l}{P_B}$ where $P_{CO_2}^l$ is the partial pressure of carbon dioxide and P^B is the altitude-dependent atmospheric pressure. The net total carbon dioxide flux expired by the lungs will be

$$V_{CO_2}^l = V_{air}^{Ex} \frac{P_{CO2}^l}{P_B} - V_{air}^{in} F_{CO_2}^{in}$$
(2)

or

$$Q_{CO2}^{l} = V_{air}^{Ex} \left(\frac{P_{CO2}^{l}}{P^{B}} - F_{CO2}^{in} \right) / f_{CO2}$$

$$\tag{3}$$

Within the alveoli we assume the flux across the membrane to be

$$Q_{CO2}^{l} = D_{CO2}^{l} \left(P_{CO2}^{lc} - P_{CO2}^{l} \right)$$
(4)

where D_{CO2}^{l} is the bult carbon dioxide diffusivity in lung tissue.

The CO_2 concentration in the lung capillaries C_{CO2}^{lc} is given by

$$C_{CO2}^{lc} = 462e^{\left(0.00415P_{CO2}^{lc}\right)} - 340e^{\left(-0.0445P_{CO2}^{lc}\right)}.$$
(5)

If the heart is pumping at a rate of V_b the carbon dioxide flux carried into lungs by venous blood flow from muscle capillary bed where CO_2 concentration is C_{CO2}^{mc} is $C_{CO2}^{mc}V_b$. The carbon dioxide flux carried by the blood from lungs is $C_{CO2}^{lc}V_b$. The difference will be the flux due to respiration.

$$Q_{CO2}^{l} = V_b \left(C_{CO2}^{mc} - C_{CO2}^{lc} \right) \tag{6}$$

The CO_2 binding relationship also holds for muscle capillaries

$$C_{CO2}^{mc} = 462e^{(0.00415P_{CO2}^{mc})} - 340e^{(-0.0445P_{CO2}^{mc})}.$$
(7)

The CO2 flux out of the muscles Q_{CO2}^m under steady state conditions is the difference between arterial and venous fluxes and must therefore be the same as the CO2 flux leaving the blood stream to the lungs:

$$Q_{CO2}^{m} = V_b \left(C_{CO2}^{mc} - C_{CO2}^{lc} \right) = Q_{CO2}^{l}$$
(8)

The difference between the partial pressure of CO2 in the muscle capillary bed and the muscle drives the CO2 flux from the production site in the mitochondria.

$$Q_{CO2}^{m} = D_{CO2}^{m} \left(P_{CO2}^{m} - P_{CO2}^{mc} \right) \tag{9}$$

where D^m_{CO2} is the bulk CO2 diffusivity in muscle tissue. Lastly We model the CO2 metabolism via

$$Q_{CO2}^{m} = 462e^{(0.00415P_{CO2}^{m})} - 340e^{(-0.0445P_{CO2}^{m})}.$$
 (10)