def model individual_AE as def import using "units_and_constants/units_BG.cellml" for unit mM using unit mM; unit fmol using unit fmol; unit per_fmol using unit per_fmol; unit J_per_mol using unit J_per_mol; unit fmol_per_sec using unit fmol_per_sec; unit C_per_mol using unit C_per_mol; unit fF using unit fF; unit fC using unit fC; unit per_second using unit per_second; unit per_sec using unit per_sec; unit J_per_K_per_mol using unit J_per_K_per_mol; unit fmol_per_L using unit fmol_per_L; unit pL using unit pL; enddef; def import using "units_and_constants/constants_BG.cellml" for comp constants using comp constants; enddef; def comp environment as var time: second {pub: out}; // initial values var q_HCO3_i: fmol {init: 1e-888, pub: out}; var q_HCO3_o: fmol {init: 1e-888, pub: out}; var q_Cl_i: fmol {init: 1e-888, pub: out}; var q_Cl_o: fmol {init: 1e-888, pub: out}; var q_S1_AE: fmol {init: 1e-888, pub: out}; var q_S2_AE: fmol {init: 1e-888, pub: out}; var q_S3_AE: fmol {init: 1e-888, pub: out}; var q_S4_AE: fmol {init: 1e-888, pub: out}; var q_S5_AE: fmol {init: 1e-888, pub: out}; var q_S6_AE: fmol {init: 1e-888, pub: out}; // From submodule var v_R61_AE: fmol_per_sec {pub: in}; var v_R12_AE: fmol_per_sec {pub: in}; var v_R23_AE: fmol_per_sec {pub: in}; var v_R34_AE: fmol_per_sec {pub: in}; var v_R45_AE: fmol_per_sec {pub: in}; var v_R56_AE: fmol_per_sec {pub: in}; ode(q_HCO3_i, time) = vvv; ode(q_HCO3_o, time) = vvv; ode(q_Cl_i, time) = vvv; ode(q_Cl_o, time) = vvv; ode(q_S1_AE, time) = vvv; ode(q_S2_AE, time) = vvv; ode(q_S3_AE, time) = vvv; ode(q_S4_AE, time) = vvv; ode(q_S5_AE, time) = vvv; ode(q_S6_AE, time) = vvv; enddef; def comp AE_parameters as var kappa_R61_AE: fmol_per_sec {init: 0.00106841, pub: out}; var kappa_R12_AE: fmol_per_sec {init: 3417.69, pub: out}; var kappa_R23_AE: fmol_per_sec {init: 449862, pub: out}; var kappa_R34_AE: fmol_per_sec {init: 0.0161841, pub: out}; var kappa_R45_AE: fmol_per_sec {init: 442364, pub: out}; var kappa_R56_AE: fmol_per_sec {init: 3.36073e+09, pub: out}; var K_HCO3_i: per_fmol {init: 8.93692e-05, pub: out}; var K_HCO3_o: per_fmol {init: 6.5169, pub: out}; var K_Cl_i: per_fmol {init: 0.678955, pub: out}; var K_Cl_o: per_fmol {init: 0.0495101, pub: out}; var K_S1_AE: per_fmol {init: 8546.87, pub: out}; var K_S2_AE: per_fmol {init: 0.228006, pub: out}; var K_S3_AE: per_fmol {init: 575.615, pub: out}; var K_S4_AE: per_fmol {init: 585.371, pub: out}; var K_S5_AE: per_fmol {init: 0.00230575, pub: out}; var K_S6_AE: per_fmol {init: 8670.02, pub: out}; enddef; def comp AE as var time: second {pub: in}; var R: J_per_K_per_mol {pub: in}; var T: kelvin {pub: in}; // parameters var kappa_R61_AE: fmol_per_sec {pub: in}; var kappa_R12_AE: fmol_per_sec {pub: in}; var kappa_R23_AE: fmol_per_sec {pub: in}; var kappa_R34_AE: fmol_per_sec {pub: in}; var kappa_R45_AE: fmol_per_sec {pub: in}; var kappa_R56_AE: fmol_per_sec {pub: in}; var K_HCO3_i: per_fmol {pub: in}; var K_HCO3_o: per_fmol {pub: in}; var K_Cl_i: per_fmol {pub: in}; var K_Cl_o: per_fmol {pub: in}; var K_S1_AE: per_fmol {pub: in}; var K_S2_AE: per_fmol {pub: in}; var K_S3_AE: per_fmol {pub: in}; var K_S4_AE: per_fmol {pub: in}; var K_S5_AE: per_fmol {pub: in}; var K_S6_AE: per_fmol {pub: in}; // Input from global environment var q_HCO3_i: fmol {pub: in}; var q_HCO3_o: fmol {pub: in}; var q_Cl_i: fmol {pub: in}; var q_Cl_o: fmol {pub: in}; var q_S1_AE: fmol {pub: in}; var q_S2_AE: fmol {pub: in}; var q_S3_AE: fmol {pub: in}; var q_S4_AE: fmol {pub: in}; var q_S5_AE: fmol {pub: in}; var q_S6_AE: fmol {pub: in}; // Constitutive parameters var mu_HCO3_i: J_per_mol; var mu_HCO3_o: J_per_mol; var mu_Cl_i: J_per_mol; var mu_Cl_o: J_per_mol; var mu_S1_AE: J_per_mol; var mu_S2_AE: J_per_mol; var mu_S3_AE: J_per_mol; var mu_S4_AE: J_per_mol; var mu_S5_AE: J_per_mol; var mu_S6_AE: J_per_mol; var v_R61_AE: fmol_per_sec {pub: out}; var v_R12_AE: fmol_per_sec {pub: out}; var v_R23_AE: fmol_per_sec {pub: out}; var v_R34_AE: fmol_per_sec {pub: out}; var v_R45_AE: fmol_per_sec {pub: out}; var v_R56_AE: fmol_per_sec {pub: out}; mu_HCO3_i = R*T*ln(K_HCO3_i*q_HCO3_i); mu_HCO3_o = R*T*ln(K_HCO3_o*q_HCO3_o); mu_Cl_i = R*T*ln(K_Cl_i*q_Cl_i); mu_Cl_o = R*T*ln(K_Cl_o*q_Cl_o); mu_S1_AE = R*T*ln(K_S1_AE*q_S1_AE); mu_S2_AE = R*T*ln(K_S2_AE*q_S2_AE); mu_S3_AE = R*T*ln(K_S3_AE*q_S3_AE); mu_S4_AE = R*T*ln(K_S4_AE*q_S4_AE); mu_S5_AE = R*T*ln(K_S5_AE*q_S5_AE); mu_S6_AE = R*T*ln(K_S6_AE*q_S6_AE); v_R61_AE = kappa_R61_AE*(ppp); v_R12_AE = kappa_R12_AE*(ppp); v_R23_AE = kappa_R23_AE*(ppp); v_R34_AE = kappa_R34_AE*(ppp); v_R45_AE = kappa_R45_AE*(ppp); v_R56_AE = kappa_R56_AE*(ppp); enddef; def map between environment and AE for vars time and time; vars q_HCO3_i and q_HCO3_i; vars q_HCO3_o and q_HCO3_o; vars q_Cl_i and q_Cl_i; vars q_Cl_o and q_Cl_o; vars q_S1_AE and q_S1_AE; vars q_S2_AE and q_S2_AE; vars q_S3_AE and q_S3_AE; vars q_S4_AE and q_S4_AE; vars q_S5_AE and q_S5_AE; vars q_S6_AE and q_S6_AE; vars v_R61_AE and v_R61_AE; vars v_R12_AE and v_R12_AE; vars v_R23_AE and v_R23_AE; vars v_R34_AE and v_R34_AE; vars v_R45_AE and v_R45_AE; vars v_R56_AE and v_R56_AE; enddef; def map between AE and AE_parameters for vars kappa_R61_AE and kappa_R61_AE; vars kappa_R12_AE and kappa_R12_AE; vars kappa_R23_AE and kappa_R23_AE; vars kappa_R34_AE and kappa_R34_AE; vars kappa_R45_AE and kappa_R45_AE; vars kappa_R56_AE and kappa_R56_AE; vars K_HCO3_i and K_HCO3_i; vars K_HCO3_o and K_HCO3_o; vars K_Cl_i and K_Cl_i; vars K_Cl_o and K_Cl_o; vars K_S1_AE and K_S1_AE; vars K_S2_AE and K_S2_AE; vars K_S3_AE and K_S3_AE; vars K_S4_AE and K_S4_AE; vars K_S5_AE and K_S5_AE; vars K_S6_AE and K_S6_AE; enddef; def map between constants and AE for vars R and R; vars T and T; enddef; enddef;