Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 26 sizeStates = 12 sizeConstants = 37 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "V_s in component soma_compartment (mV)" legend_constants[0] = "V_Na in component soma_compartment (mV)" legend_algebraic[25] = "I_Na_s in component soma_compartment (uA_per_cm2)" legend_algebraic[0] = "I_K_DR_s in component soma_compartment (uA_per_cm2)" legend_algebraic[10] = "I_Ca_T in component soma_compartment (uA_per_cm2)" legend_algebraic[15] = "I_K_Ca in component soma_compartment (uA_per_cm2)" legend_algebraic[17] = "I_A in component soma_compartment (uA_per_cm2)" legend_algebraic[20] = "I_h in component soma_compartment (uA_per_cm2)" legend_constants[1] = "g_Na_s in component soma_compartment (mS_per_cm2)" legend_constants[2] = "g_K_DR_s in component soma_compartment (mS_per_cm2)" legend_constants[3] = "g_Ca_T in component soma_compartment (mS_per_cm2)" legend_constants[4] = "g_K_Ca in component soma_compartment (mS_per_cm2)" legend_constants[5] = "g_A in component soma_compartment (mS_per_cm2)" legend_constants[6] = "g_h in component soma_compartment (mS_per_cm2)" legend_states[1] = "Ca in component soma_compartment (mM)" legend_constants[7] = "k_Ca in component soma_compartment (per_second)" legend_constants[8] = "K_Ca in component soma_compartment (mM)" legend_constants[9] = "V_h in component soma_compartment (mV)" legend_constants[10] = "beta in component soma_compartment (mMcm2_per_uAs)" legend_constants[11] = "I_APP in component soma_compartment (uA_per_cm2)" legend_constants[12] = "V_Ca in component general_variables (mV)" legend_constants[13] = "V_K in component general_variables (mV)" legend_states[2] = "n in component gating_variables (dimensionless)" legend_states[3] = "h in component gating_variables (dimensionless)" legend_algebraic[22] = "m_infinity in component gating_variables (dimensionless)" legend_constants[14] = "g_c in component general_variables (mS_per_cm2)" legend_constants[15] = "p in component general_variables (dimensionless)" legend_states[4] = "V_D in component dendritic_compartment (mV)" legend_constants[16] = "C_m in component general_variables (uF_per_cm2)" legend_states[5] = "m_T in component gating_variables (dimensionless)" legend_states[6] = "h_T in component gating_variables (dimensionless)" legend_states[7] = "a in component gating_variables (dimensionless)" legend_states[8] = "b in component gating_variables (dimensionless)" legend_states[9] = "m_h in component gating_variables (dimensionless)" legend_states[10] = "Na in component dendritic_compartment (mM)" legend_constants[17] = "K_p in component dendritic_compartment (mM)" legend_algebraic[18] = "I_L in component dendritic_compartment (uA_per_cm2)" legend_algebraic[16] = "I_pump in component dendritic_compartment (uA_per_cm2)" legend_constants[18] = "R_pump in component dendritic_compartment (uA_per_cm2)" legend_constants[19] = "Na_eq in component dendritic_compartment (mM)" legend_algebraic[11] = "phi_Na in component dendritic_compartment (dimensionless)" legend_constants[31] = "phi_Na_eq in component dendritic_compartment (dimensionless)" legend_constants[20] = "alpha in component dendritic_compartment (mMcm2_per_uAs)" legend_algebraic[21] = "I_NMDA in component dendritic_compartment (uA_per_cm2)" legend_algebraic[19] = "I_Na_NMDA in component dendritic_compartment (uA_per_cm2)" legend_constants[21] = "g_NMDA in component dendritic_compartment (mS_per_cm2)" legend_constants[22] = "g_Na_NMDA in component dendritic_compartment (mS_per_cm2)" legend_constants[23] = "g_L in component dendritic_compartment (mS_per_cm2)" legend_constants[24] = "Mg_o in component dendritic_compartment (mM)" legend_constants[25] = "K_Mg in component dendritic_compartment (mM)" legend_constants[26] = "q in component dendritic_compartment (mV)" legend_constants[27] = "V_NMDA in component dendritic_compartment (mV)" legend_constants[28] = "V_L in component dendritic_compartment (mV)" legend_algebraic[23] = "I_D in component dendritic_compartment (uA_per_cm2)" legend_algebraic[24] = "I_Ca_L in component dendritic_compartment (uA_per_cm2)" legend_constants[29] = "g_Ca_L in component dendritic_compartment (mS_per_cm2)" legend_constants[30] = "g_K_DR_D in component dendritic_compartment (mS_per_cm2)" legend_algebraic[1] = "I_K_DR_D in component dendritic_compartment (uA_per_cm2)" legend_states[11] = "m_L in component gating_variables (dimensionless)" legend_algebraic[2] = "m_T_infinity in component gating_variables (dimensionless)" legend_algebraic[3] = "h_T_infinity in component gating_variables (dimensionless)" legend_algebraic[4] = "a_infinity in component gating_variables (dimensionless)" legend_algebraic[5] = "b_infinity in component gating_variables (dimensionless)" legend_algebraic[6] = "m_h_infinity in component gating_variables (dimensionless)" legend_algebraic[7] = "m_L_infinity in component gating_variables (dimensionless)" legend_algebraic[8] = "n_infinity in component gating_variables (dimensionless)" legend_algebraic[9] = "h_infinity in component gating_variables (dimensionless)" legend_algebraic[12] = "tau_h in component gating_variables (second)" legend_algebraic[13] = "tau_n in component gating_variables (second)" legend_constants[32] = "tau_m_T in component gating_variables (second)" legend_constants[33] = "tau_h_T in component gating_variables (second)" legend_algebraic[14] = "tau_m_L in component gating_variables (second)" legend_constants[34] = "tau_a in component gating_variables (second)" legend_constants[35] = "tau_b in component gating_variables (second)" legend_constants[36] = "tau_m_h in component gating_variables (second)" legend_rates[0] = "d/dt V_s in component soma_compartment (mV)" legend_rates[1] = "d/dt Ca in component soma_compartment (mM)" legend_rates[4] = "d/dt V_D in component dendritic_compartment (mV)" legend_rates[10] = "d/dt Na in component dendritic_compartment (mM)" legend_rates[3] = "d/dt h in component gating_variables (dimensionless)" legend_rates[2] = "d/dt n in component gating_variables (dimensionless)" legend_rates[5] = "d/dt m_T in component gating_variables (dimensionless)" legend_rates[11] = "d/dt m_L in component gating_variables (dimensionless)" legend_rates[9] = "d/dt m_h in component gating_variables (dimensionless)" legend_rates[7] = "d/dt a in component gating_variables (dimensionless)" legend_rates[8] = "d/dt b in component gating_variables (dimensionless)" legend_rates[6] = "d/dt h_T in component gating_variables (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -64.0 constants[0] = 55 constants[1] = 3.2 constants[2] = 6.4 constants[3] = 1.5 constants[4] = 1.2 constants[5] = 2 constants[6] = 0.1 states[1] = 0 constants[7] = 1 constants[8] = 0.0004 constants[9] = -30 constants[10] = 0.104 constants[11] = -6.7 constants[12] = 120 constants[13] = -85 states[2] = 0.002 states[3] = 1.0 constants[14] = 0.1 constants[15] = 0.5 states[4] = -77.0 constants[16] = 1 states[5] = 0.1 states[6] = 0.1 states[7] = 0.1 states[8] = 0.1 states[9] = 0.1 states[10] = 5.09 constants[17] = 15 constants[18] = 18 constants[19] = 8 constants[20] = 0.173 constants[21] = 25 constants[22] = 5 constants[23] = 0.18 constants[24] = 1.4 constants[25] = 10 constants[26] = 12.5 constants[27] = 0 constants[28] = -50 constants[29] = 0.19 constants[30] = 0.14 states[11] = 0.1 constants[31] = (power(constants[19], 3.00000))/(power(constants[19], 3.00000)+power(constants[17], 3.00000)) constants[32] = 1.00000 constants[33] = 10.0000 constants[34] = 0.500000 constants[35] = 10.0000 constants[36] = 190.000 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[2] = 1.00000/(1.00000+exp(-(states[0]+55.0000)/7.00000)) rates[5] = (algebraic[2]-states[5])/constants[32] algebraic[6] = 1.00000/(1.00000+exp((states[0]+80.0000)/8.00000)) rates[9] = (algebraic[6]-states[9])/constants[36] algebraic[4] = 1.00000/(1.00000+exp(-(states[0]+60.0000)/10.0000)) rates[7] = (algebraic[4]-states[7])/constants[34] algebraic[5] = 1.00000/(1.00000+exp((states[0]+70.0000)/5.70000)) rates[8] = (algebraic[5]-states[8])/constants[35] algebraic[3] = 1.00000/(1.00000+exp((states[0]+81.0000)/11.0000)) rates[6] = (algebraic[3]-states[6])/constants[33] algebraic[10] = constants[3]*states[6]*(states[0]-constants[12])*(power(states[5], 2.00000)) rates[1] = -(constants[10]*algebraic[10]+constants[7]*states[1]) algebraic[9] = 1.00000/(1.00000+exp((states[0]+30.0000)/8.30000)) algebraic[12] = 0.400000*(1.00000+2.00000/(1.00000+exp((states[0]+25.0000)/5.00000))) rates[3] = (algebraic[9]-states[3])/algebraic[12] algebraic[8] = 1.00000/(1.00000+exp(-(states[0]+31.0000)/5.30000)) algebraic[13] = (0.800000*(1.00000+2.00000/(1.00000+exp((states[0]+25.0000)/10.0000))))/(1.00000+exp(-(states[0]+70.0000)/10.0000)) rates[2] = (algebraic[8]-states[2])/algebraic[13] algebraic[7] = 1.00000/(1.00000+exp(-(states[4]+20.0000)/5.30000)) algebraic[14] = 0.400000/(5.00000*exp(-(states[4]+11.0000)/8.30000)+(-(states[4]+11.0000)/8.30000)/(exp(-(states[4]+11.0000)/8.30000)-1.00000)) rates[11] = (algebraic[7]-states[11])/algebraic[14] algebraic[11] = (power(states[10], 3.00000))/(power(states[10], 3.00000)+power(constants[17], 3.00000)) algebraic[16] = constants[18]*(algebraic[11]-constants[31]) algebraic[19] = (constants[22]/(1.00000+(constants[24]/constants[25])*exp(-states[4]/constants[26])))*(states[4]-constants[0]) rates[10] = constants[20]*(-algebraic[19]-algebraic[16]*3.00000) algebraic[18] = constants[23]*(states[4]-constants[28]) algebraic[21] = (constants[21]/(1.00000+(constants[24]/constants[25])*exp(-states[4]/constants[26])))*(states[4]-constants[27]) algebraic[24] = constants[29]*(states[4]-constants[12])*(power(states[11], 2.00000)) algebraic[1] = constants[30]*(states[4]-constants[13])*(power(states[2], 2.00000)) rates[4] = -(1000.00*(algebraic[24]+algebraic[1]+algebraic[21]+algebraic[16]+algebraic[18]+(constants[14]/(1.00000-constants[15]))*(states[4]-states[0])))/constants[16] algebraic[22] = 1.00000/(1.00000+exp(-(states[0]+35.0000)/6.20000)) algebraic[25] = constants[1]*states[3]*(states[0]-constants[0])*(power(algebraic[22], 3.00000)) algebraic[0] = constants[2]*(states[0]-constants[13])*(power(states[2], 2.00000)) algebraic[15] = ((constants[4]*(power(states[1], 4.00000)))/(power(states[1], 4.00000)+power(constants[8], 4.00000)))*(states[0]-constants[13]) algebraic[17] = constants[5]*states[8]*(states[0]-constants[13])*(power(states[7], 4.00000)) algebraic[20] = constants[6]*states[9]*(states[0]-constants[9]) rates[0] = (1000.00*(constants[11]-(algebraic[25]+algebraic[10]+algebraic[0]+algebraic[15]+algebraic[17]+algebraic[20]+(constants[14]/constants[15])*(states[0]-states[4]))))/constants[16] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[2] = 1.00000/(1.00000+exp(-(states[0]+55.0000)/7.00000)) algebraic[6] = 1.00000/(1.00000+exp((states[0]+80.0000)/8.00000)) algebraic[4] = 1.00000/(1.00000+exp(-(states[0]+60.0000)/10.0000)) algebraic[5] = 1.00000/(1.00000+exp((states[0]+70.0000)/5.70000)) algebraic[3] = 1.00000/(1.00000+exp((states[0]+81.0000)/11.0000)) algebraic[10] = constants[3]*states[6]*(states[0]-constants[12])*(power(states[5], 2.00000)) algebraic[9] = 1.00000/(1.00000+exp((states[0]+30.0000)/8.30000)) algebraic[12] = 0.400000*(1.00000+2.00000/(1.00000+exp((states[0]+25.0000)/5.00000))) algebraic[8] = 1.00000/(1.00000+exp(-(states[0]+31.0000)/5.30000)) algebraic[13] = (0.800000*(1.00000+2.00000/(1.00000+exp((states[0]+25.0000)/10.0000))))/(1.00000+exp(-(states[0]+70.0000)/10.0000)) algebraic[7] = 1.00000/(1.00000+exp(-(states[4]+20.0000)/5.30000)) algebraic[14] = 0.400000/(5.00000*exp(-(states[4]+11.0000)/8.30000)+(-(states[4]+11.0000)/8.30000)/(exp(-(states[4]+11.0000)/8.30000)-1.00000)) algebraic[11] = (power(states[10], 3.00000))/(power(states[10], 3.00000)+power(constants[17], 3.00000)) algebraic[16] = constants[18]*(algebraic[11]-constants[31]) algebraic[19] = (constants[22]/(1.00000+(constants[24]/constants[25])*exp(-states[4]/constants[26])))*(states[4]-constants[0]) algebraic[18] = constants[23]*(states[4]-constants[28]) algebraic[21] = (constants[21]/(1.00000+(constants[24]/constants[25])*exp(-states[4]/constants[26])))*(states[4]-constants[27]) algebraic[24] = constants[29]*(states[4]-constants[12])*(power(states[11], 2.00000)) algebraic[1] = constants[30]*(states[4]-constants[13])*(power(states[2], 2.00000)) algebraic[22] = 1.00000/(1.00000+exp(-(states[0]+35.0000)/6.20000)) algebraic[25] = constants[1]*states[3]*(states[0]-constants[0])*(power(algebraic[22], 3.00000)) algebraic[0] = constants[2]*(states[0]-constants[13])*(power(states[2], 2.00000)) algebraic[15] = ((constants[4]*(power(states[1], 4.00000)))/(power(states[1], 4.00000)+power(constants[8], 4.00000)))*(states[0]-constants[13]) algebraic[17] = constants[5]*states[8]*(states[0]-constants[13])*(power(states[7], 4.00000)) algebraic[20] = constants[6]*states[9]*(states[0]-constants[9]) algebraic[23] = algebraic[21]+algebraic[16]+algebraic[18] return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)