Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 1 sizeStates = 4 sizeConstants = 5 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_algebraic[0] = "GnRH in component GnRH (nanomolar)" legend_states[0] = "F in component F (dimensionless)" legend_constants[0] = "kfb in component model_parameters (second_order_rate_constant)" legend_constants[1] = "kbf in component model_parameters (first_order_rate_constant)" legend_states[1] = "B in component B (dimensionless)" legend_states[2] = "R in component R (dimensionless)" legend_constants[2] = "s in component model_parameters (first_order_rate_constant)" legend_constants[3] = "a1 in component model_parameters (first_order_rate_constant)" legend_constants[4] = "a2 in component model_parameters (first_order_rate_constant)" legend_states[3] = "C in component C (dimensionless)" legend_rates[0] = "d/dt F in component F (dimensionless)" legend_rates[1] = "d/dt B in component B (dimensionless)" legend_rates[2] = "d/dt R in component R (dimensionless)" legend_rates[3] = "d/dt C in component C (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 1.0 constants[0] = 19.35 constants[1] = 9.91 states[1] = 0.0 states[2] = 2115.0 constants[2] = 6.80 constants[3] = 0.0328 constants[4] = 0.0830 states[3] = 0.0 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[2] = constants[2]-(constants[3]+constants[4]*states[1])*states[2] rates[3] = (constants[3]+constants[4]*states[1])*states[2] algebraic[0] = custom_piecewise([greater_equal(voi , 0.00000) & less(voi , 0.0666667), 0.500000 , greater_equal(voi , 0.0666667) & less(voi , 0.400000), 0.00000 , greater_equal(voi , 0.400000) & less(voi , 0.466667), 0.500000 , greater_equal(voi , 0.466667) & less(voi , 2.46667), 0.00000 , greater_equal(voi , 2.46667) & less(voi , 2.53333), 0.500000 , greater_equal(voi , 2.53333) & less(voi , 2.61667), 0.00000 , greater_equal(voi , 2.61667) & less(voi , 2.68333), 0.500000 , greater_equal(voi , 2.68333) & less(voi , 4.68333), 0.00000 , greater_equal(voi , 4.68333) & less(voi , 4.75000), 0.500000 , greater_equal(voi , 4.75000) & less(voi , 4.91667), 0.00000 , greater_equal(voi , 4.91667) & less(voi , 4.98333), 0.500000 , greater_equal(voi , 4.98333) & less(voi , 6.98333), 0.00000 , greater_equal(voi , 6.98333) & less(voi , 7.06667), 0.500000 , greater_equal(voi , 7.06667) & less(voi , 7.73333), 0.00000 , greater_equal(voi , 7.73333) & less(voi , 7.80000), 0.500000 , greater_equal(voi , 7.80000) & less(voi , 9.80000), 0.00000 , True, float('nan')]) rates[0] = constants[1]*states[1]-constants[0]*states[0]*algebraic[0] rates[1] = constants[0]*states[0]*algebraic[0]-constants[1]*states[1] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = custom_piecewise([greater_equal(voi , 0.00000) & less(voi , 0.0666667), 0.500000 , greater_equal(voi , 0.0666667) & less(voi , 0.400000), 0.00000 , greater_equal(voi , 0.400000) & less(voi , 0.466667), 0.500000 , greater_equal(voi , 0.466667) & less(voi , 2.46667), 0.00000 , greater_equal(voi , 2.46667) & less(voi , 2.53333), 0.500000 , greater_equal(voi , 2.53333) & less(voi , 2.61667), 0.00000 , greater_equal(voi , 2.61667) & less(voi , 2.68333), 0.500000 , greater_equal(voi , 2.68333) & less(voi , 4.68333), 0.00000 , greater_equal(voi , 4.68333) & less(voi , 4.75000), 0.500000 , greater_equal(voi , 4.75000) & less(voi , 4.91667), 0.00000 , greater_equal(voi , 4.91667) & less(voi , 4.98333), 0.500000 , greater_equal(voi , 4.98333) & less(voi , 6.98333), 0.00000 , greater_equal(voi , 6.98333) & less(voi , 7.06667), 0.500000 , greater_equal(voi , 7.06667) & less(voi , 7.73333), 0.00000 , greater_equal(voi , 7.73333) & less(voi , 7.80000), 0.500000 , greater_equal(voi , 7.80000) & less(voi , 9.80000), 0.00000 , True, float('nan')]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)