Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =13; end % There are a total of 5 entries in each of the rate and state variable arrays. % There are a total of 14 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (millisecond)'); LEGEND_CONSTANTS(:,1) = strpad('alpha in component model_constants (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('lamda in component model_constants (dimensionless)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,3) = strpad('Cm in component membrane (microF_per_cm2)'); LEGEND_ALGEBRAIC(:,9) = strpad('i_Ca_T in component T_type_calcium_current (microA_per_cm2)'); LEGEND_ALGEBRAIC(:,10) = strpad('i_Ca_L in component L_type_calcium_current (microA_per_cm2)'); LEGEND_ALGEBRAIC(:,12) = strpad('i_Ca_K in component calcium_activated_potassium_current (microA_per_cm2)'); LEGEND_ALGEBRAIC(:,11) = strpad('i_K in component potassium_current (microA_per_cm2)'); LEGEND_ALGEBRAIC(:,13) = strpad('i_Cl in component leak_chloride_current (microA_per_cm2)'); LEGEND_ALGEBRAIC(:,1) = strpad('V_tilde in component gate_voltage (millivolt)'); LEGEND_CONSTANTS(:,4) = strpad('E_Ca in component T_type_calcium_current (millivolt)'); LEGEND_CONSTANTS(:,5) = strpad('g_Ca_T in component T_type_calcium_current (milliS_per_cm2)'); LEGEND_ALGEBRAIC(:,8) = strpad('m in component T_type_calcium_current_m_gate (dimensionless)'); LEGEND_STATES(:,2) = strpad('h in component T_type_calcium_current_h_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,2) = strpad('alpha_m in component T_type_calcium_current_m_gate (per_millisecond)'); LEGEND_ALGEBRAIC(:,5) = strpad('beta_m in component T_type_calcium_current_m_gate (per_millisecond)'); LEGEND_ALGEBRAIC(:,3) = strpad('alpha_h in component T_type_calcium_current_h_gate (per_millisecond)'); LEGEND_ALGEBRAIC(:,6) = strpad('beta_h in component T_type_calcium_current_h_gate (per_millisecond)'); LEGEND_CONSTANTS(:,6) = strpad('g_Ca_L in component L_type_calcium_current (milliS_per_cm2)'); LEGEND_STATES(:,3) = strpad('x_Ca in component L_type_calcium_current_x_Ca_gate (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('tau_x_Ca in component L_type_calcium_current_x_Ca_gate (millisecond)'); LEGEND_CONSTANTS(:,8) = strpad('E_K in component potassium_current (millivolt)'); LEGEND_CONSTANTS(:,9) = strpad('g_K in component potassium_current (milliS_per_cm2)'); LEGEND_STATES(:,4) = strpad('n in component potassium_current_n_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,4) = strpad('alpha_n in component potassium_current_n_gate (per_millisecond)'); LEGEND_ALGEBRAIC(:,7) = strpad('beta_n in component potassium_current_n_gate (per_millisecond)'); LEGEND_STATES(:,5) = strpad('Ca in component calcium_activated_potassium_current (millimolar)'); LEGEND_CONSTANTS(:,10) = strpad('g_Ca_K in component calcium_activated_potassium_current (milliS_per_cm2)'); LEGEND_CONSTANTS(:,11) = strpad('rho in component calcium_activated_potassium_current (per_millisecond)'); LEGEND_CONSTANTS(:,12) = strpad('K_c in component calcium_activated_potassium_current (millimolar_per_millivolt)'); LEGEND_CONSTANTS(:,13) = strpad('g_Cl in component leak_chloride_current (milliS_per_cm2)'); LEGEND_CONSTANTS(:,14) = strpad('E_Cl in component leak_chloride_current (millivolt)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,2) = strpad('d/dt h in component T_type_calcium_current_h_gate (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt x_Ca in component L_type_calcium_current_x_Ca_gate (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt n in component potassium_current_n_gate (dimensionless)'); LEGEND_RATES(:,5) = strpad('d/dt Ca in component calcium_activated_potassium_current (millimolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 0.12; CONSTANTS(:,2) = 12.5; STATES(:,1) = -55.0; CONSTANTS(:,3) = 2.5; CONSTANTS(:,4) = 80.0; CONSTANTS(:,5) = 0.51; STATES(:,2) = 0.01; CONSTANTS(:,6) = 0.004; STATES(:,3) = 0.01; CONSTANTS(:,7) = 500.0; CONSTANTS(:,8) = -75.0; CONSTANTS(:,9) = 0.3; STATES(:,4) = 0.01; STATES(:,5) = 1E-4; CONSTANTS(:,10) = 0.03; CONSTANTS(:,11) = 0.125E3; CONSTANTS(:,12) = 425.0E-5; CONSTANTS(:,13) = 0.003; CONSTANTS(:,14) = -40.0; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,5) = (CONSTANTS(:,11)./CONSTANTS(:,1)).*( CONSTANTS(:,12).*STATES(:,3).*(CONSTANTS(:,4) - STATES(:,1)) - STATES(:,5)); ALGEBRAIC(:,1) = ( 127.000.*STATES(:,1)+8265.00)./105.000; RATES(:,3) = (1.00000./(1.00000+exp( 0.150000.*( - ALGEBRAIC(:,1) - 50.0000))) - STATES(:,3))./( CONSTANTS(:,1).*CONSTANTS(:,7)); ALGEBRAIC(:,3) = 0.0700000.*exp((25.0000 - ALGEBRAIC(:,1))./20.0000); ALGEBRAIC(:,6) = 1.00000./(1.00000+exp(5.50000 - ALGEBRAIC(:,1).*0.100000)); RATES(:,2) = ( ALGEBRAIC(:,3).*(1.00000 - STATES(:,2)) - ALGEBRAIC(:,6).*STATES(:,2))./( CONSTANTS(:,1).*CONSTANTS(:,2)); ALGEBRAIC(:,4) = ( 0.0100000.*(55.0000 - ALGEBRAIC(:,1)))./(exp((55.0000 - ALGEBRAIC(:,1))./10.0000) - 1.00000); ALGEBRAIC(:,7) = 0.125000.*exp((45.0000 - ALGEBRAIC(:,1))./80.0000); RATES(:,4) = ( ALGEBRAIC(:,4).*(1.00000 - STATES(:,4)) - ALGEBRAIC(:,7).*STATES(:,4))./( CONSTANTS(:,1).*CONSTANTS(:,2)); ALGEBRAIC(:,2) = ( 0.100000.*(50.0000 - ALGEBRAIC(:,1)))./(exp(5.00000 - ALGEBRAIC(:,1).*0.100000) - 1.00000); ALGEBRAIC(:,5) = 4.00000.*exp((25.0000 - ALGEBRAIC(:,1))./18.0000); ALGEBRAIC(:,8) = ALGEBRAIC(:,2)./(ALGEBRAIC(:,2)+ALGEBRAIC(:,5)); ALGEBRAIC(:,9) = CONSTANTS(:,5).*power(ALGEBRAIC(:,8), 3.00000).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,4)); ALGEBRAIC(:,10) = CONSTANTS(:,6).*STATES(:,3).*(STATES(:,1) - CONSTANTS(:,4)); ALGEBRAIC(:,12) = ( CONSTANTS(:,10).*STATES(:,5).*(STATES(:,1) - CONSTANTS(:,8)))./(0.500000+STATES(:,5)); ALGEBRAIC(:,11) = CONSTANTS(:,9).*power(STATES(:,4), 4.00000).*(STATES(:,1) - CONSTANTS(:,8)); ALGEBRAIC(:,13) = CONSTANTS(:,13).*(STATES(:,1) - CONSTANTS(:,14)); RATES(:,1) = - (1.00000./( CONSTANTS(:,3).*CONSTANTS(:,1))).*(ALGEBRAIC(:,9)+ALGEBRAIC(:,10)+ALGEBRAIC(:,12)+ALGEBRAIC(:,11)+ALGEBRAIC(:,13)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( 127.000.*STATES(:,1)+8265.00)./105.000; ALGEBRAIC(:,3) = 0.0700000.*exp((25.0000 - ALGEBRAIC(:,1))./20.0000); ALGEBRAIC(:,6) = 1.00000./(1.00000+exp(5.50000 - ALGEBRAIC(:,1).*0.100000)); ALGEBRAIC(:,4) = ( 0.0100000.*(55.0000 - ALGEBRAIC(:,1)))./(exp((55.0000 - ALGEBRAIC(:,1))./10.0000) - 1.00000); ALGEBRAIC(:,7) = 0.125000.*exp((45.0000 - ALGEBRAIC(:,1))./80.0000); ALGEBRAIC(:,2) = ( 0.100000.*(50.0000 - ALGEBRAIC(:,1)))./(exp(5.00000 - ALGEBRAIC(:,1).*0.100000) - 1.00000); ALGEBRAIC(:,5) = 4.00000.*exp((25.0000 - ALGEBRAIC(:,1))./18.0000); ALGEBRAIC(:,8) = ALGEBRAIC(:,2)./(ALGEBRAIC(:,2)+ALGEBRAIC(:,5)); ALGEBRAIC(:,9) = CONSTANTS(:,5).*power(ALGEBRAIC(:,8), 3.00000).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,4)); ALGEBRAIC(:,10) = CONSTANTS(:,6).*STATES(:,3).*(STATES(:,1) - CONSTANTS(:,4)); ALGEBRAIC(:,12) = ( CONSTANTS(:,10).*STATES(:,5).*(STATES(:,1) - CONSTANTS(:,8)))./(0.500000+STATES(:,5)); ALGEBRAIC(:,11) = CONSTANTS(:,9).*power(STATES(:,4), 4.00000).*(STATES(:,1) - CONSTANTS(:,8)); ALGEBRAIC(:,13) = CONSTANTS(:,13).*(STATES(:,1) - CONSTANTS(:,14)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end