Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =5; end % There are a total of 4 entries in each of the rate and state variable arrays. % There are a total of 26 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('R_des in component R_des (micromolar)'); LEGEND_CONSTANTS(:,25) = strpad('K_plus in component model_parameters (per_micromolar_per_second)'); LEGEND_STATES(:,2) = strpad('C_cyto in component C_cyto (micromolar)'); LEGEND_CONSTANTS(:,1) = strpad('n_i in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('K_act in component model_parameters (micromolar)'); LEGEND_CONSTANTS(:,3) = strpad('n_a in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,4) = strpad('K_minus in component model_parameters (per_second)'); LEGEND_CONSTANTS(:,5) = strpad('K_1 in component model_parameters (per_second)'); LEGEND_CONSTANTS(:,6) = strpad('b in component model_parameters (per_second)'); LEGEND_ALGEBRAIC(:,3) = strpad('I_ra in component I_ra (micromolar)'); LEGEND_CONSTANTS(:,7) = strpad('Ca_tot in component model_parameters (micromolar)'); LEGEND_CONSTANTS(:,8) = strpad('alpha in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,9) = strpad('V_MP in component model_parameters (micromolar_per_second)'); LEGEND_CONSTANTS(:,10) = strpad('n_p in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,11) = strpad('K_p in component model_parameters (micromolar)'); LEGEND_ALGEBRAIC(:,1) = strpad('I_rable in component I_rable (micromolar)'); LEGEND_STATES(:,3) = strpad('IP3 in component IP3 (micromolar)'); LEGEND_CONSTANTS(:,12) = strpad('K_IP in component model_parameters (micromolar)'); LEGEND_CONSTANTS(:,26) = strpad('V_PLC in component V_PLC (micromolar)'); LEGEND_ALGEBRAIC(:,2) = strpad('V_3K in component V_3K (micromolar)'); LEGEND_ALGEBRAIC(:,4) = strpad('V_5P in component V_5P (micromolar)'); LEGEND_CONSTANTS(:,13) = strpad('V_plc in component model_parameters (micromolar_per_second)'); LEGEND_CONSTANTS(:,14) = strpad('gamma in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,15) = strpad('V_k in component model_parameters (micromolar_per_second)'); LEGEND_CONSTANTS(:,16) = strpad('K_k in component model_parameters (micromolar)'); LEGEND_CONSTANTS(:,17) = strpad('n_d in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,18) = strpad('K_d in component model_parameters (micromolar)'); LEGEND_STATES(:,4) = strpad('IP4 in component IP4 (micromolar)'); LEGEND_CONSTANTS(:,19) = strpad('V_p1 in component model_parameters (micromolar_per_second)'); LEGEND_CONSTANTS(:,20) = strpad('K_p1 in component model_parameters (micromolar)'); LEGEND_CONSTANTS(:,21) = strpad('K_p2 in component model_parameters (micromolar)'); LEGEND_ALGEBRAIC(:,5) = strpad('V_15P in component V_15P (micromolar)'); LEGEND_CONSTANTS(:,22) = strpad('k in component model_parameters (per_second)'); LEGEND_CONSTANTS(:,23) = strpad('V_p2 in component model_parameters (micromolar_per_second)'); LEGEND_CONSTANTS(:,24) = strpad('K_inh in component model_parameters (micromolar)'); LEGEND_RATES(:,1) = strpad('d/dt R_des in component R_des (micromolar)'); LEGEND_RATES(:,2) = strpad('d/dt C_cyto in component C_cyto (micromolar)'); LEGEND_RATES(:,3) = strpad('d/dt IP3 in component IP3 (micromolar)'); LEGEND_RATES(:,4) = strpad('d/dt IP4 in component IP4 (micromolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0.1; STATES(:,2) = 0.1; CONSTANTS(:,1) = 4; CONSTANTS(:,2) = 0.56; CONSTANTS(:,3) = 3; CONSTANTS(:,4) = 0.5; CONSTANTS(:,5) = 2.57; CONSTANTS(:,6) = 7e-4; CONSTANTS(:,7) = 80; CONSTANTS(:,8) = 0.1; CONSTANTS(:,9) = 4; CONSTANTS(:,10) = 2; CONSTANTS(:,11) = 0.35; STATES(:,3) = 0.1; CONSTANTS(:,12) = 1; CONSTANTS(:,13) = 1.3; CONSTANTS(:,14) = 0.2; CONSTANTS(:,15) = 0.5; CONSTANTS(:,16) = 1; CONSTANTS(:,17) = 2; CONSTANTS(:,18) = 0.3; STATES(:,4) = 0.1; CONSTANTS(:,19) = 5; CONSTANTS(:,20) = 10; CONSTANTS(:,21) = 2; CONSTANTS(:,22) = 0.01; CONSTANTS(:,23) = 0.2; CONSTANTS(:,24) = 0.15; CONSTANTS(:,25) = CONSTANTS(:,4)./power(CONSTANTS(:,24), CONSTANTS(:,1)); CONSTANTS(:,26) = CONSTANTS(:,14).*CONSTANTS(:,13).*1.00000; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,25).*power(STATES(:,2), CONSTANTS(:,1)).*1.00000.*( ((1.00000 - STATES(:,1))./(1.00000+power(STATES(:,2)./CONSTANTS(:,2), CONSTANTS(:,3)))).*1.00000) - CONSTANTS(:,4).*STATES(:,1); ALGEBRAIC(:,1) = ( (1.00000 - STATES(:,1)).*STATES(:,3))./(CONSTANTS(:,12)+STATES(:,3)); ALGEBRAIC(:,3) = ( ALGEBRAIC(:,1).*1.00000)./(1.00000+power(CONSTANTS(:,2)./STATES(:,2), CONSTANTS(:,3))); RATES(:,2) = CONSTANTS(:,5).*1.00000.*( CONSTANTS(:,6).*1.00000+ ALGEBRAIC(:,3).*1.00000).*( (CONSTANTS(:,7) - STATES(:,2).*(CONSTANTS(:,8)+1.00000)).*1.00000) - CONSTANTS(:,9).*( (power(STATES(:,2), CONSTANTS(:,10))./(power(CONSTANTS(:,11), CONSTANTS(:,10))+power(STATES(:,2), CONSTANTS(:,10)))).*1.00000); ALGEBRAIC(:,2) = CONSTANTS(:,15).*(STATES(:,3)./(CONSTANTS(:,16)+STATES(:,3))).*(power(STATES(:,2), CONSTANTS(:,17))./(power(CONSTANTS(:,18), CONSTANTS(:,17))+power(STATES(:,2), CONSTANTS(:,17)))).*1.00000; ALGEBRAIC(:,4) = CONSTANTS(:,19).*1.00000.*(STATES(:,3)./( CONSTANTS(:,20).*(1.00000+STATES(:,4)./CONSTANTS(:,21))+STATES(:,3))); RATES(:,3) = ((CONSTANTS(:,26) - ALGEBRAIC(:,2)) - ALGEBRAIC(:,4))./1.00000; ALGEBRAIC(:,5) = ( CONSTANTS(:,23).*1.00000.*STATES(:,4))./( CONSTANTS(:,21).*(1.00000+STATES(:,3)./CONSTANTS(:,20))+STATES(:,4)); RATES(:,4) = (ALGEBRAIC(:,2) - ALGEBRAIC(:,5)).*1.00000 - CONSTANTS(:,22).*STATES(:,4); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( (1.00000 - STATES(:,1)).*STATES(:,3))./(CONSTANTS(:,12)+STATES(:,3)); ALGEBRAIC(:,3) = ( ALGEBRAIC(:,1).*1.00000)./(1.00000+power(CONSTANTS(:,2)./STATES(:,2), CONSTANTS(:,3))); ALGEBRAIC(:,2) = CONSTANTS(:,15).*(STATES(:,3)./(CONSTANTS(:,16)+STATES(:,3))).*(power(STATES(:,2), CONSTANTS(:,17))./(power(CONSTANTS(:,18), CONSTANTS(:,17))+power(STATES(:,2), CONSTANTS(:,17)))).*1.00000; ALGEBRAIC(:,4) = CONSTANTS(:,19).*1.00000.*(STATES(:,3)./( CONSTANTS(:,20).*(1.00000+STATES(:,4)./CONSTANTS(:,21))+STATES(:,3))); ALGEBRAIC(:,5) = ( CONSTANTS(:,23).*1.00000.*STATES(:,4))./( CONSTANTS(:,21).*(1.00000+STATES(:,3)./CONSTANTS(:,20))+STATES(:,4)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end